Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 1259, 2024 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-38218904

RESUMO

In this study, biochar (BC) and hydrochar (HC) composites were synthesized with natural kaolinite clay and their properties, stability, carbon (C) sequestration potential, polycyclic aromatic hydrocarbons (PAHs) toxicity, and impacts on maize germination and growth were explored. Conocarpus waste was pretreated with 0%, 10%, and 20% kaolinite and pyrolyzed to produce BCs (BC, BCK10, and BCK20, respectively), while hydrothermalized to produce HCs (HC, HCK10, and HCK20, respectively). The synthesized materials were characterized using X-ray diffraction, scanning electron microscope analyses, Fourier transform infrared, thermogravimetric analysis, surface area, proximate analyses, and chemical analysis to investigate the distinction in physiochemical and structural characteristics. The BCs showed higher C contents (85.73-92.50%) as compared to HCs (58.81-61.11%). The BCs demonstrated a higher thermal stability, aromaticity, and C sequestration potential than HCs. Kaolinite enriched-BCs showed the highest cation exchange capacity than pristine BC (34.97% higher in BCK10 and 38.04% higher in BCK20 than pristine BC), while surface area was the highest in kaolinite composited HCs (202.8% higher in HCK10 and 190.2% higher in HCK20 than pristine HC). The recalcitrance index (R50) speculated a higher recalcitrance for BC, BCK10, and BCK20 (R50 > 0.7), minimal degradability for HCK10 and HCK20 (0.5 < R50 < 0.7), and higher degradability for biomass and HC (R50 < 0.5). Overall, increasing the kaolinite enrichment percentage significantly enhanced the thermal stability and C sequestration potential of charred materials, which may be attributed to changes in the structural arrangements. The ∑ total PAHs concentration in the synthesized materials were below the USEPA's suggested limits, indicating their safe use as soil amendments. Germination indices reflected positive impacts of synthesized charred materials on maize germination and growth. Therefore, we propose that kaolinite-composited BCs and HCs could be considered as efficient and cost-effective soil amendments for improving plant growth.


Assuntos
Caulim , Zea mays , Carvão Vegetal/química , Solo/química
2.
Toxics ; 11(11)2023 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-37999533

RESUMO

Microplastics (MPs) are emerging environmental pollutants worldwide, posing potential health risks. Moreover, MPs may act as vectors for other contaminants and affect their fate, transport, and deposition in the environment. Therefore, efficient and economical techniques are needed for the removal of contemporary MPs and contaminants from the environment. The present research study investigated the sorption of phosphorus (P) and ammonium (NH4+) onto date palm waste-derived biochar (BC) from an aqueous solution in the presence of polyamide (PA) and polyethylene (PE) MPs. The BC was prepared at 600 °C, characterized for physio-chemical properties, and applied for P and NH4+ removal via isotherm and kinetic sorption trials. The results of the sorption trials demonstrated the highest removal of NH4+ and P was obtained at neutral pH 7. The highest P sorption (93.23 mg g-1) by BC was recorded in the presence of PA, while the highest NH4+ sorption (103.76 mg g-1) was found with co-occurring PE in an aqueous solution. Sorption isotherm and kinetics models revealed that P and NH4+ removal by MP-amended BC followed chemisorption, electrostatic interaction, precipitation, diffusion, and ion exchange mechanisms. Overall, co-existing PA enhanced the removal of P and NH4+ by 66% and 7.7%, respectively, while co-existing PE increased the removal of P and NH4+ by 55% and 30%, respectively, through the tested BC. Our findings suggested that converting date palm waste into BC could be used as a competent and economical approach to removing P and NH4+ from contaminated water. Furthermore, microplastics such as PE and PA could assist in the removal of P and NH4+ from contaminated water using BC.

3.
Environ Pollut ; 335: 122319, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37544401

RESUMO

Extensive production and utilization of plastic products have resulted in the generation of microplastics (MPs), subsequently polluting the environment. The efficiency of biochars (BCs) derived from jujube (Ziziphus jujube L.) biomass (300 °C and 700 °C) for nylon (NYL) and polyethylene (PE) removal from contaminated water was explored in fixed-bed column trials. The optimum pH for the removal of both MPs was found 7. Both of the produced biochars demonstrated >99% removal of the MPs, while the sand filter exhibited a maximum of 78% removal of MPs. BC produced at 700 °C (BC700) showed 33-fold higher MPs retention, while BC produced at 300 °C (BC300) exhibited 20-fold higher retention, as compared to sand filters, indicating the higher efficiency of BC produced at higher pyrolysis temperature. Entrapment into the pores, entanglement with flaky structures of the BCs, and electrostatics interactions were the major mechanism for MPs retention in BCs. The efficiency of MPs-amended BCs was further explored for the removal of Pb(II) and Cd(II) in fixed-bed column trials. BC700 amended with PE and NYL exhibited the highest 50% breakthrough time (2114.23 and 2024.61 min, respectively, for Pb(II) removal and 2107.92 and 1965.19 min, respectively, for Cd(II) removal), as compared to sand filters (38.07 and 60.49 min for Pb(II) and Cd(II) removal, respectively). Thomas model predicted highest adsorption capacity was exhibited by BC700 amended with PE (584.34 and 552.80 mg g-1, for Pb(II) and Cd(II) removal, respectively), followed by BC700 amended with NYL (557.65 and 210.59 mg g-1 for Pb(II) and Cd(II) removal, respectively). Therefore, jujube waste-derived BCs could be used as efficient adsorbents to remove PE and NYL from contaminated water, while MPs-loaded BCs can further be utilized for higher adsorption of Pb(II) and Cd(II) from contaminated aqueous media. These findings suggest that BC could be used as an efficient adsorbent to remove the co-existing MPs-metals ions from the environment on a sustainable basis.


Assuntos
Metais Pesados , Poluentes Químicos da Água , Ziziphus , Microplásticos , Plásticos , Cádmio , Água , Chumbo , Carvão Vegetal/química , Nylons , Adsorção , Polietilenos , Poluentes Químicos da Água/química
4.
Int J Phytoremediation ; 25(12): 1687-1698, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36912095

RESUMO

Mining activities provide a pathway for the entry and accumulation of various heavy metals in soil, which ultimately leads to severe environmental pollution. Utilization of various immobilizing agents could restore such contaminated soils. Therefore, in this study, date palm-derived biochars (BCs: produced at 300 °C, 500 °C and 700 °C) and magnetized biochars (MBCs) were employed to stabilize heavy metals (Cd, Pb, Cu and Zn) in mining polluted soil. Metal polluted soil was amended with BCs and MBCs at w/w ratio of 2% and cultivated with wheat (Triticum aestivum L.) in a greenhouse. After harvesting, dry and fresh biomass of plants were recorded. The soil and plant samples were collected, and the concentrations of heavy metals were measured after extracting with water, DTPA (diethylenetriaminepentaacetic acid), EDTA (ethylenediaminetetraacetic acid), and acetic acid. BCs and MBCs resulted in reduced metal availability and uptake, with higher fresh and dry biomass (>36%). MBCs showed maximum decrease (>70%) in uptake and shoot concentration of metals, as these reductions for Cd and Pb reached below the detection limits. Among all single-step extractions, the DTPA-extractable metals showed a significant positive correlation with shoot concentrations of tested metals. Thus, the synthesized BCs and MBCs could effectively be used for stabilizing heavy metals and improve plant productivity in multi-contaminated soils. However, future studies should focus on long term field trials to restore contaminated mining soils using modified biochars.


This study has demonstrated the performance of magnetized biochars for in-situ stabilization of toxic metals (Cd, Pb, Cu and Zn) in mining polluted soil by single extraction method. All the produced BCs and magnetized BCs showed great potential in immobilizing the metals and reducing their availability in soil, consequently decreasing their shoot concentration and plant uptake. Significant negative correlations were observed between soil pH and metal extraction from applied extraction methods such as water soluble, DTPA, and EDTA extractions. We found DTPA as a suitable extractant for investigating metal uptake in plant in multi-contaminated soils. Treatments with MBCs showed maximum decrease in plant uptake and concentration of studied metals. Thus, application of MBCs could efficiently immobilize soil heavy metals.


Assuntos
Metais Pesados , Phoeniceae , Poluentes do Solo , Cádmio , Phoeniceae/metabolismo , Chumbo , Poluentes do Solo/análise , Biodegradação Ambiental , Metais Pesados/análise , Carvão Vegetal , Solo , Ácido Pentético
5.
Sci Rep ; 12(1): 8972, 2022 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-35643781

RESUMO

Sources and levels of heavy metals (HMs) in soil and dust of urban and suburban areas in Riyadh (industrial city) and Mahad AD'Dahab (mining area) cities in Saudi Arabia were reported in this study. Additionally, the concentrations of HMs in different soil particle size fractions (> 250, 63-250 and < 63 µm) were reported. Pollution extent, and ecological and human health risks associated with collected soil and dust samples were explored. Contamination levels of HMs were higher in dust as compared to soil samples at all sites. The average integrated potential ecological risk in dust samples of urban area of Mahad AD'Dahab was 139, and thus characterized as a very-high-risk criterion. Enrichment factor (EF), correlation analyses, and principal component analysis showed that aluminum (Al), cobalt (Co), chromium (Cr), iron (Fe), manganese (Mn), nickel (Ni), titanium (Ti), and zinc (Zn) had mainly the lithogenic occurrence (EF < 2). However, Zn, copper (Cu), and lead (Pb) in Riyadh, and cadmium (Cd), Cu, Zn, and Pb in the Mahad AD'Dahab were affected by industrial and mining activities, respectively, that were of anthropogenic origins (EF > 2). The hazard index values of dust and soil (< 63 µm) samples in both urban and suburban areas in Mahad AD'Dahab were > 1, suggesting non-carcinogenic risk. Therefore, the dust and soil samples from the mined area of Mahad AD'Dahab had a higher pollution levels, as well as ecological and human health risks than those from Riyadh. Hence, the pollution of such residential environments with HMs (especially Cd, Cu, Zn, and Pb) needs to be monitored.


Assuntos
Poeira , Metais Pesados , Cádmio/análise , Poeira/análise , Monitoramento Ambiental , Humanos , Chumbo/análise , Metais Pesados/análise , Metais Pesados/toxicidade , Medição de Risco , Solo , Zinco/análise
6.
Membranes (Basel) ; 12(2)2022 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-35207149

RESUMO

Carbon nanodots (CNDs)-embedded pullulan (PUL) nanofibers were developed and successfully applied for sulfathiazole (STZ) removal from wastewater streams for the first time. The CNDs were incorporated into PUL at 0.0%, 1.0%, 2.0%, and 3.0% (w/w) to produce M1, M2, M3, and M4 nanofibers (PUL-NFs), respectively. The produced PUL-NFs were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR), X-ray diffraction analysis (XRD), thermal gravimetric analysis (TGA) and Differential scanning calorimetry (DSC) and applied for STZ removal from aqueous solutions through pH, kinetics, and equilibrium batch sorption trials. A pH range of 4.0-6.0 was observed to be optimal for maximum STZ removal. Pseudo-second order, intraparticle diffusion, and Elovich models were suitably fitted to kinetics adsorption data (R2 = 0.82-0.99), whereas Dubinin-Radushkevich, Freundlich, and Langmuir isotherms were fitted to equilibrium adsorption data (R2= 0.88-0.99). STZ adsorption capacity of PUL-NFs improved as the amount of embedded CNDs increased. Maximum STZ adsorption capacities of the synthesized PUL-NFs were in the order of: M4 > M3 > M2 > M1 (133.68, 124.27, 93.09, and 35.04 mg g-1, respectively). Lewis acid-base reaction and π-π electron donor-acceptor interactions were the key STZ removal mechanisms under an acidic environment, whereas H-bonding and diffusion were key under a basic environment. Therefore, CNDs-embedded PUL-NFs could be employed as an environmentally friendly, efficient, and non-toxic adsorbent to remove STZ from wastewater streams.

7.
Appl Biol Chem ; 64(1): 91, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34957350

RESUMO

This review focuses on existing technologies for carcass and corpse disposal and potential alternative treatment strategies. Furthermore, key issues related to these treatments (e.g., carcass and corpse disposal events, available methods, performances, and limitations) are addressed in conjunction with associated environmental impacts. Simultaneously, various treatment technologies have been evaluated to provide insights into the adsorptive removal of specific pollutants derived from carcass disposal and management. In this regard, it has been proposed that a low-cost pollutant sorbent may be utilized, namely, biochar. Biochar has demonstrated the ability to remove (in)organic pollutants and excess nutrients from soils and waters; thus, we identify possible biochar uses for soil and water remediation at carcass and corpse disposal sites. To date, however, little emphasis has been placed on potential biochar use to manage such disposal sites. We highlight the need for strategic efforts to accurately assess biochar effectiveness when applied towards the remediation of complex pollutants produced and circulated within carcass and corpse burial systems.

8.
Plants (Basel) ; 10(12)2021 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-34961036

RESUMO

Elevated levels of doxycycline (DC) have been detected in the environment due to its extensive utilization as a veterinary antibiotic. Sorption-desorption behavior of DC in soil affects its transport, transformation, and availability in the environment. Thus, sorption-desorption behavior of DC was explored in three soils (S1, S2, and S3) after manure application with and without mesquite wood-waste-derived biochar (BC) pyrolyzed at 600 °C. Sorption batch trials demonstrated the highest DC sorption in soil S1 as compared to S2 and S3, either alone or in combination with manure or manure + BC. Chemical sorption and pore diffusion were involved in DC sorption, as indicated by the kinetic models. Soil S1 with manure + BC exhibited the highest Langmuir model predicted sorption capacity (18.930 mg g-1) compared with the other two soils. DC sorption capacity of soils was increased by 5.0-6.5-fold with the addition of manure, and 10-13-fold with BC application in a soil-manure system. In desorption trials, manure application resulted in 67%, 40%, and 41% increment in DC desorption in soil S1, S2, and S3, respectively, compared to the respective soils without manure application. In contrast, BC application reduced DC desorption by 73%, 66%, and 65%, in S1, S2, and S3, respectively, compared to the soils without any amendment. The highest DC sorption after BC application could be due to H bonding, π-π EDA interactions, and diffusion into the pores of BC. Hence, mesquite wood-waste-derived BC can effectively be used to enhance DC retention in contaminated soil to ensure a sustainable ecosystem.

9.
Saudi J Biol Sci ; 28(11): 6218-6229, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34764750

RESUMO

The development of a simple method to synthesize highly efficient and stable magnetic microsphere beads for sulfathiazole (STZ) removal from contaminated aqueous media was demonstrated in this study. Conocarpus (Conocarpus erectus L.) tree waste (CW) derived biochar (BC) was modified to fabricate chitosan-BC (CBC) and magnetic CBC (CBC-Fe) microsphere beads. Proximate, chemical, and structural properties of the produced adsorbents were investigated. Kinetics, equilibrium, and pH adsorption batch trials were conducted to evaluate the effectiveness of the synthesized adsorbents for STZ removal. All adsorbents exhibited the highest STZ adsorption at pH 5.0. STZ adsorption kinetics data was best emulated using pseudo-second order and Elovich models. The equilibrium adsorption data was best emulated using Langmuir, Freundlich, Redlich-Peterson, and Temkin models. CBC-Fe demonstrated the highest Elovich, pseudo-second order, and power function rate constants, as well as the highest apparent diffusion rate constant. Additionally, Langmuir isotherm predicted maximum adsorption capacity was the highest for CBC-Fe (98.67 mg g-1), followed by CBC (56.54 mg g-1) and BC (48.63 mg g-1). CBC-Fe and CBC removed 74.5%-108.8% and 16.2%-25.6% more STZ, respectively, than that of pristine BC. π-π electron-donor-acceptor interactions and Lewis acid-base reactions were the main mechanisms for STZ removal; however, intraparticle diffusion and H-bonding further contributed in the adsorption process. The higher efficiency of CBC-Fe for STZ adsorption could be due to its magnetic properties as well as stronger and conducting microsphere beads, which degraded the STZ molecules through generation of HO• radicals.

10.
J Environ Manage ; 298: 113486, 2021 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-34391102

RESUMO

Millions of human pathogenic viral particles are shed from infected individuals and introduce into wastewater, subsequently causing waterborne diseases worldwide. These viruses can be transmitted from wastewater to human beings via direct contact and/or ingestion/inhalation of aerosols. Even the advanced wastewater treatment technologies are unable to remove pathogenic viruses from wastewater completely, posing a serious health risk. Recently, coronavirus disease 2019 (COVID-19) has been urged globally due to severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), which has resulted in >4.1 million deaths until July 2021. A rapid human-to-human transmission, uncertainties in effective vaccines, non-specific medical treatments, and unclear symptoms compelled the world into complete lockdown, social distancing, air-travel suspension, and closure of educational institutions, subsequently damaging the global economy and trade. Although, few medical treatments, rapid detection tools, and vaccines have been developed so far to curb the spread of COVID-19; however, several uncertainties exist in their applicability. Further, the acceptance of vaccines among communities is lower owing to the fear of side effects such as blood-clotting and heart inflammation. SARS-CoV-2, an etiologic agent of COVID-19, has frequently been detected in wastewater, depicting a potential transmission risk to healthy individuals. Contrarily, the occurrence of SARS-CoV-2 in wastewater can be used as an early outbreak detection tool via water-based epidemiology. Therefore, the spread of SARS-CoV-2 through fecal-oral pathway can be reduced and any possible outbreak can be evaded by proper wastewater surveillance. In this review, wastewater recycling complications, potential health risks of COVID-19 emergence, and current epidemiological measures to control COVID-19 spread have been discussed. Moreover, the viability of SARS-CoV-2 in various environments and survival in wastewater has been reviewed. Additionally, the necessary actions (vaccination, face mask, social distancing, and hand sanitization) to limit the transmission of SARS-CoV-2 have been recommended. Therefore, wastewater surveillance can serve as a feasible, efficient, and reliable epidemiological measure to lessen the spread of COVID-19.


Assuntos
COVID-19 , Águas Residuárias , Controle de Doenças Transmissíveis , Surtos de Doenças , Humanos , Prevalência , SARS-CoV-2
11.
Molecules ; 26(15)2021 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-34361826

RESUMO

Vertical translocation/leaching of sulfamethoxazole (SMZ) through manure-amended sandy loam soil and significance of biochar application on SMZ retention were investigated in this study. Soil was filled in columns and amended with manure spiked with 13.75 mg kg-1 (S1), 27.5 mg kg-1 (S2), and 55 mg kg-1 (S3) of SMZ. Jujube (Ziziphus jujube L.) wood waste was transformed into biochar and mixed with S3 at 0.5% (S3-B1), 1.0% (S3-B2), and 2.0% (S3-B3) ratio. Cumulative SMZ leaching was lowest at pH 3.0, which increased by 16% and 34% at pH 5.0 and 7.0, respectively. A quicker release and translocation of SMZ from manure occurred during the initial 40 h, which gradually reduced over time. Intraparticle diffusion and Elovich kinetic models were the best fitted to leaching data. S3 exhibited the highest release and vertical translocation of SMZ, followed by S2, and S1; however, SMZ leaching was reduced by more than twofold in S3-B3. At pH 3.0, 2.0% biochar resulted in 99% reduction in SMZ leaching within 72 h, while 1.0% and 0.5% biochar applications reduced SMZ leaching to 99% within 120 and 144 h, respectively, in S3. The higher SMZ retention onto biochar could be due to electrostatic interactions, H-bonding, and π-π electron donor acceptor interactions.


Assuntos
Carvão Vegetal/química , Esterco/análise , Areia/química , Poluentes do Solo/metabolismo , Sulfametoxazol/metabolismo , Madeira/química , Irrigação Agrícola , Poluentes do Solo/análise , Sulfametoxazol/análise
12.
Chemosphere ; 266: 129198, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33310527

RESUMO

This study was conducted to investigate the potential of Jujube (Ziziphus jujube L) wood waste-derived biochar (BC) and its derivative polymer-modified biochar (PBC) in removing hexavalent chromium (CrVI) from aqueous solutions and in achieving Cr stabilization in tannery waste-contaminated soil. BC was produced at three different pyrolysis temperature (300 °C, 500 °C, 700 °C) and was polymerized with acrylamide and N, N1 methylenebisacrylamide. The results showed that CrVI adsorption is a function of the pH and CrVI initial concentration of the solution. The PBC showed highest sorption efficiency for CrVI removal, which amounted to 76.4%-99.6% of the CrVI overall initial concentrations (5-40 mg L-1) at an initial pH of 2. In greenhouse, wheat (Triticum aestivum L) was cultivated as a test crop in pots with tannery waste-contaminated soil along with BCs and PBCs amendments. The BC and PBC amended soil showed 47.7% and 65% less Cr uptake by the plant roots in comparison with unamended soil, respectively. In addition, zero concentration of Cr in the plant shoots was noted with the PBC-amended soil, while the Cr concentration in the shoots was decreased by 89% with the BC-amended soil. Thus, it was concluded that BC and PBC have great potential in removing CrVI from aqueous phases and in decreasing the Cr mobility and bioavailability in soil.


Assuntos
Poluentes do Solo , Carvão Vegetal , Cromo , Polímeros , Solo
13.
J Hazard Mater ; 405: 124249, 2021 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-33158660

RESUMO

Fabrication of efficient and low-cost adsorbents through enzyme induced carbonate precipitation (EICP) of sand embedded with binding agents for sulfathiazole (STZ) removal is reported for the first time. Sand enriched with biochar (300 °C, 500 °C, and 700 °C), xanthan gum, guar gum, bentonite, or sodium alginate (1% w/w ratios) was cemented via EICP technique. Enrichment with binding agents decreased the unconfined compressive strength, improved the porosity, and induced functional groups. Biochar enrichment reduced the pH, and increased the calcite contents and electrical conductivity. Fixed-bed column adsorption trials revealed that biochars enrichment resulted in the highest STZ removal (64.7-87.9%) from water at initial STZ concentration of 50 mg L-1, than the adsorbents enriched with other binding agents. Yoon-Nelson and Thomas kinetic models were fitted well to the adsorption data (R2 = 0.91-0.98). The adsorbents embedded with 700 °C biochar (BC7) exhibited the highest Yoon-Nelson rate constants (0.087 L min-1), 50% breakthrough time (58.056 min), and Thomas model-predicted maximum adsorption capacity (4.925 mg g-1). Overall, BC7 removed 168% higher STZ from water than pristine cemented sand. Post-adsorption XRD and FTIR analyses suggested the binding of STZ onto the adsorbents. π-π electron-donor-acceptor interactions, aided-by electrostatic interactions and H-bonding were the main STZ adsorption mechanisms.


Assuntos
Areia , Poluentes Químicos da Água , Adsorção , Carbonato de Cálcio , Carvão Vegetal , Cinética , Poluentes Químicos da Água/análise
14.
Sci Rep ; 10(1): 16125, 2020 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-32999378

RESUMO

Novel carbon nanodots (nCD-DBC) and nano zero-valent iron composites (nZVI-DBC) were synthesized using date palm waste-derived biochar (DBC). The synthesized materials were analyzed for chemical and structural composition by using FTIR, SEM, XRD, and TGA, and evaluated for their methylthioninium chloride dye (MB) removal efficiency from contaminated aqueous solutions. pH 7.0 was found optimum for the highest MB removal in sorption batch studies. Kinetics sorption of MB onto the sorbents was best described by pseudo-second-order (R2 = 0.93-0.99) and Elovich models (R2 = 0.86-0.97) implying that sorption was being controlled by chemisorption. Langmuir model predicted maximum sorption capacities for nCD-DBC, nZVI-DBC, and DBC were 1558.66, 1182.90, and 851.67 mg g-1, respectively, which correlated with the results of kinetics sorption. Likewise, nCD-DBC yielded the highest partition coefficient (7067 mL g-1), followed by nZVI-DBC (1460 mL g-1), and DBC (930 mL g-1). Post-sorption XRD, FTIR, and SEM analyses depicted the binding of MB onto the sorbents. It was suggested that electrostatic interactions, π-π electron donor-accepter interactions, degradation, and diffusion were responsible for MB removal by the synthesized materials. Therefore, the nCD-DBC, nZVI-DBC, and DBC can potentially be used for scavenging MB dye from contaminated aqueous solutions.

15.
Environ Pollut ; 266(Pt 1): 115256, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32712479

RESUMO

Waste date palm-derived biochar (DPBC) was modified with nano-zerovalent iron (BC-ZVI) and silica (BC-SiO2) through mechanochemical treatments and evaluated for arsenate (As(V)) removal from water. The feedstock and synthesized adsorbents were characterized through proximate, ultimate, and chemical analyses for structural, surface, and mineralogical compositions. BC-ZVI demonstrated the highest surface area and contents of C, N, and H. A pH range of 2-6 was optimum for BC-ZVI (100% removal), 3-6 for DPBC (89% removal), and 4-6 for BC-SiO2 (18% removal). Co-occurring PO43- and SO42- ions showed up to 100% reduction, while NO3- and Cl- ions resulted in up to 26% reduction in As(V) removal. Fitness of the Langmuir, Freundlich and Redlich-Peterson isotherms to As(V) adsorption data suggested that both mono- and multi-layer adsorption processes occurred. BC-ZVI showed superior performance by demonstrating the highest Langmuir maximum adsorption capacity (26.52 mg g-1), followed by DPBC, BC-SiO2, and commercial activated carbon (AC) (7.33, 5.22, and 3.28 mg g-1, respectively). Blockage of pores with silica particles in BC-SiO2 resulted in lower As(V) removal than that of DPBC. Pseudo-second-order kinetic model fitted well with the As(V) adsorption data (R2 = 0.99), while the Elovich, intraparticle diffusion, and power function models showed a moderate fitness (R2 = 0.53-0.93). The dynamics of As(V) adsorption onto the tested adsorbents exhibited the highest adsorption rates for BC-ZVI. As(V) adsorption onto the tested adsorbents was confirmed through post-adsorption FTIR, SEM-EDS, and XRD analyses. Adsorption of As(V) onto DPBC, BC-SiO2, and AC followed electrostatic interactions, surface complexation, and intraparticle diffusion, whereas, these mechanisms were further abetted by the higher surface area, nano-sized structure, and redox reactions of BC-ZVI.


Assuntos
Ferro , Poluentes Químicos da Água/análise , Adsorção , Arseniatos , Carvão Vegetal , Cinética , Dióxido de Silício , Água
16.
PLoS One ; 15(7): e0232811, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32614852

RESUMO

In the present work, the olive mill solid waste (OMSW)-derived biochar (BC) was produced at various pyrolytic temperatures (300-700°C) and characterized to investigate its potential negative versus positive application effects on pH, electrical conductivity (EC), and nutrients (P, K, Na, Ca, Mg, Fe, Mn, Zn, and Cu) availability in a calcareous loamy sand soil. Therefore, a greenhouse pot experiment with maize (Zea mays L.) was conducted using treatments consisting of a control (CK), inorganic fertilizer of NPK (INF), and 1% and 3% (w/w) of OMSW-derived BCs. The results showed that BC yield, volatile matter, functional groups, and zeta potential decreased with pyrolytic temperature, whereas BC pH, EC, and its contents of ash and fixed carbon increased with pyrolytic temperature. The changes in the BC properties with increasing pyrolytic temperatures reflected on soil pH, EC and the performance of soil nutrients availability. The BC application, especially with increasing pyrolytic temperature and/or application rate, significantly increased soil pH, EC, NH4OAc-extractable K, Na, Ca, and Mg, and ammonium bicarbonate-diethylenetriaminepentaacetic acid (AB-DTPA)-extractable Fe and Zn, while AB-DTPA-extractable Mn decreased. The application of 1% and 3% BC, respectively, increased the NH4OAc-extractable K by 2.5 and 5.2-fold for BC300, by 3.2 and 8.0-fold for BC500, and by 3.3 and 8.9-fold for BC700 compared with that of untreated soil. The results also showed significant increase in shoot content of K, Na, and Zn, while there was significant decrease in shoot content of P, Ca, Mg, and Mn. Furthermore, no significant effects were observed for maize growth as a result of BC addition. In conclusion, OMSW-derived BC can potentially have positive effects on the enhancement of soil K availability and its plant content but it reduced shoot nutrients, especially for P, Ca, Mg, and Mn; therefore, application of OMSW-derived BC to calcareous soil might be restricted.


Assuntos
Carvão Vegetal/farmacologia , Nutrientes/análise , Olea/química , Areia/química , Solo/química , Carvão Vegetal/química , Concentração de Íons de Hidrogênio , Minerais/metabolismo , Nutrientes/metabolismo , Fatores de Tempo , Zea mays/efeitos dos fármacos , Zea mays/crescimento & desenvolvimento , Zea mays/metabolismo
17.
J Hazard Mater ; 384: 121500, 2020 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-31727527

RESUMO

Natural clay sediments were collected from ten different localities in Saudi Arabia (S-1 from eastern, S-2 to S-4 from middle and S-5 to S-10 from western regions), characterized and evaluated for their efficiency towards chlortetracycline (CTC) removal from aqueous solutions. Sediment S-4 exhibited highest surface area (288.5 m2 g-1), followed by S-5, S-9, and S-1 (252.1, 249.6, and 110.4 m2 g-1, respectively). Sediments S-5, S-9, S-2, and S-4 showed the highest cation exchange capacities (CEC) (62.33, 56.54, 52.72, and 46.85 cmol kg-1, respectively). The pH range of 3.5-5.5 was optimum for the highest CTC removal. Freundlich model was best fitted to CTC sorption data (R2 = 0.96-0.99), followed by Dubinin-Radushkevich model (R2 = 0.89-0.97). The sediments S-4, S-5, and S-9 exhibited the highest CTC removal efficiency (98.80-99.05%), which could be due to higher smectite and kaolinite contents, CEC, surface area and layered structure. Post-sorption XRD patterns shown new peaks and peak shifts confirming the sorption of CTC. Electrostatic interactions, interlayer sorption and H-π bonding were the potential CTC sorption mechanisms. Therefore, natural clay sediments with high sorption capacities could efficiently remove CTC from contaminated aqueous media.


Assuntos
Clortetraciclina/isolamento & purificação , Argila , Poluentes Químicos da Água/isolamento & purificação , Adsorção , Sedimentos Geológicos
18.
J Environ Manage ; 246: 214-228, 2019 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-31176983

RESUMO

The prevalence of organic micropollutants (OMPs) in various environmental compartments is posing a serious health risks to all kinds of lives on the planet. The levels of OMPs such as polyaromatic hydrocarbons, antibiotics, pesticides, contraceptive medicines, and personal care products in water bodies are increasing with each passing day. It is an urgent need of time to limit the release of OMPs into the environment, and to remove the prevailing OMPs for sustainable environmental management. The majority of the conventional means of water decontamination are either inefficient or expensive. However, due to nanosize, high surface area, and hollow and layered structure, carbon nanotubes (CNTs) serve as excellent sorbents for the removal of a diverse range of OMPs. The occurrence of emerging OMPs and their detrimental effects on human and animal health are collected and discussed in this review. The characteristics and efficacy of various CNTs (pristine and modified) for the efficient removal of different OMPs, and the removal mechanisms have been reviewed and discussed. The literature demonstrated that adsorption of OMPs onto CNTs is very complicated and rely on multiple factors including the properties of adsorbent and the adsorbate as well as solution chemistry. It was found that H-bonding, electrostatic interactions, van der Waals forces, hydrophobic interactions, H-π bongs, and π-π interactions were the major mechanisms responsible for the adsorption of OMPs onto various kinds of CNTs. Despite of higher affinities for OMPs, hydrophobicity and higher costs restrain the practical application of CNTs for wastewater treatment on large scale. However, continuous production may lead to the development of cost-effective, efficient and eco-friendly CTNs technology for wastewater treatments in future.


Assuntos
Nanotubos de Carbono , Poluentes Químicos da Água , Purificação da Água , Adsorção , Águas Residuárias
19.
Saudi J Biol Sci ; 26(4): 665-672, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-31048990

RESUMO

Biochar has vital importance as soil additives due to its characteristics, which are responsible for alleviating environmental problems and climate change. These additives should be evaluated to understand their physico-chemical properties and their ecotoxicological effects on plant growth. Therefore, this study aimed to (i) distinguish the properties of biochar produced from date palm and its derivative hydrochar, and (ii) investigate their ecotoxicological effects. Specifically, the biochar and hydrochar were produced from date palm leaflets by pyrolysis and hydrothermal carbonization, respectively. The produced chars were evaluated for their characteristics before and after water washing, and for their ecotoxicological effects on seed germination of lettuce (Lactuca sativa L). The results show that water washing lowered biochar's pH and increased hydrochar's pH. Moreover, water washing of hydrochar caused a significant reduction in the total content of essential elements such as Ca, Mg, Mn, and Zn. Lettuce germination was significantly inhibited to 20% by hydrochar, whereas biochar enhanced lettuce growth by increasing shoot length (by 51%) and dry biomass (by 114%). Hydrochar toxicity was correlated (R > 0.95 at p = 0.05) with high contents of total polyaromatic hydrocarbons (98.8 mg kg-1). Pre-treatment and assessment of hydrochar should be taken into account prior to application as a soil amendment.

20.
Environ Sci Pollut Res Int ; 26(15): 15136-15152, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30924040

RESUMO

Date palm waste-derived biochar (DBC) was produced through pyrolysis (600 °C) and modified with zeolite (Z-DBC), silica (S-DBC), or nano-zerovalent iron (nZVI-DBC) to design efficient sorbents. The pristine and engineered biochars were characterized by SEM, XRD, BET, TGA, CHNS-O, and FTIR to investigate the surface, structural, and mineralogical composition. The nZVI-DBC exhibited lowest pH (6.15) and highest surface area (220.92 m2 g-1), carbon (80.55%), nitrogen (3.78%), and hydrogen (11.09%) contents compared with other biochars. Isotherm sorption data for chlortetracycline (CTC) removal from aqueous solutions was described well by Langmuir and Redlich-Peterson isotherms showing the highest fitness (R2 values in the range of 0.88-0.98 and 0.88-0.99, respectively). Langmuir predicted maximum CTC adsorption capacity was in order of nZVI-DBC (89.05 mg g-1) > S-DBC (45.57 mg g-1) > Z-DBC (30.42 mg g-1) > DBC (28.19 mg g-1). Kinetics adsorption data was best described by power function model (R2 = 0.93-0.99), followed by interaparticle diffusion (R2 = 0.85-0.96) model. The nZVI-DBC performed outclass by removing 98% of CTC, followed by S-DBC (68%), Z-DBC (35%), and DBC (36%). Chemisorption, H-bonding, and interaparticle diffusion were the operating mechanisms for CTC adsorption onto DBC, S-DBC, and Z-DBC, while π-π electron donor-accepter interactions and redox reactions augmented these mechanisms for highest CTC adsorption onto nZVI-DBC. Therefore, nZVI-DBC may serve as an efficient green technology for the removal of CTC from aqueous solutions and to reduce surface date palm waste pollution. Graphical abstract .


Assuntos
Carvão Vegetal/química , Clortetraciclina/química , Ferro/química , Nitrogênio/química , Dióxido de Silício/química , Poluentes Químicos da Água/análise , Zeolitas/química , Adsorção , Difusão , Cinética , Oxirredução
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...