Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Membranes (Basel) ; 10(12)2020 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-33276495

RESUMO

The polymer electrolyte based on Dx:Cs:Mg(CH3COO)2:Ni with three different glycerol concentrations have been prepared. The impedance study has verified that the electrolyte with 42 wt.% of glycerol (A3) has the highest ionic conductivity of 7.71 × 10-6 S cm-1 at room temperature. The ionic conductivity is found to be influenced by the transport parameters. From the dielectric analysis, it was shown that the electrolytes in this system obeyed the non-Debye behavior. The A3 electrolyte exhibited a dominancy of ions (tion > te) with a breakdown voltage of 2.08 V. The fabricated electrochemical double layer capacitor (EDLC) achieved the specific capacitance values of 24.46 F/g and 39.68 F/g via the cyclic voltammetry (CV) curve and the charge-discharge profile, respectively. The other significant parameters to evaluate the performance of EDLC have been determined, such as internal resistance (186.80 to 202.27 Ω) energy density (4.46 Wh/kg), power density (500.58 to 558.57 W/kg) and efficiency (92.88%).

2.
Materials (Basel) ; 13(21)2020 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-33143345

RESUMO

In this study, porous cationic hydrogen (H+) conducting polymer blend electrolytes with an amorphous structure were prepared using a casting technique. Poly(vinyl alcohol) (PVA), chitosan (CS), and NH4SCN were used as raw materials. The peak broadening and drop in intensity of the X-ray diffraction (XRD) pattern of the electrolyte systems established the growth of the amorphous phase. The porous structure is associated with the amorphous nature, which was visualized through the field-emission scanning electron microscope (FESEM) images. The enhancement of DC ionic conductivity with increasing salt content was observed up to 40 wt.% of the added salt. The dielectric and electric modulus results were helpful in understanding the ionic conductivity behavior. The transfer number measurement (TNM) technique was used to determine the ion (tion) and electron (telec) transference numbers. The high electrochemical stability up to 2.25 V was recorded using the linear sweep voltammetry (LSV) technique.

3.
Polymers (Basel) ; 12(11)2020 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-33138114

RESUMO

In this work, plasticized magnesium ion-conducting polymer blend electrolytes based on chitosan:methylcellulose (CS:MC) were prepared using a solution cast technique. Magnesium acetate [Mg(CH3COO)2] was used as a source of the ions. Nickel metal-complex [Ni(II)-complex)] was employed to expand the amorphous phase. For the ions dissociation enhancement, glycerol plasticizer was also engaged. Incorporating 42 wt% of the glycerol into the electrolyte system has been shown to improve the conductivity to 1.02 × 10-4 S cm-1. X-ray diffraction (XRD) analysis showed that the electrolyte with the highest conductivity has a minimum crystallinity degree. The ionic transference number was estimated to be more than the electronic transference number. It is concluded that in CS:MC:Mg(CH3COO)2:Ni(II)-complex:glycerol, ions are the primary charge carriers. Results from linear sweep voltammetry (LSV) showed electrochemical stability to be 2.48 V. An electric double-layer capacitor (EDLC) based on activated carbon electrode and a prepared solid polymer electrolyte was constructed. The EDLC cell was then analyzed by cyclic voltammetry (CV) and galvanostatic charge-discharge methods. The CV test disclosed rectangular shapes with slight distortion, and there was no appearance of any redox currents on both anodic and cathodic parts, signifying a typical behavior of EDLC. The EDLC cell indicated a good cyclability of about (95%) for throughout of 200 cycles with a specific capacitance of 47.4 F/g.

4.
Polymers (Basel) ; 12(10)2020 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-33019543

RESUMO

Compatible green polymer electrolytes based on methyl cellulose (MC) were prepared for energy storage electrochemical double-layer capacitor (EDLC) application. X-ray diffraction (XRD) was conducted for structural investigation. The reduction in the intensity of crystalline peaks of MC upon the addition of sodium iodide (NaI) salt discloses the growth of the amorphous area in solid polymer electrolytes (SPEs). Impedance plots show that the uppermost conducting electrolyte had a smaller bulk resistance. The highest attained direct current DC conductivity was 3.01 × 10-3 S/cm for the sample integrated with 50 wt.% of NaI. The dielectric analysis suggests that samples in this study showed non-Debye behavior. The electron transference number was found to be lower than the ion transference number, thus it can be concluded that ions are the primary charge carriers in the MC-NaI system. The addition of a relatively high concentration of salt into the MC matrix changed the ion transfer number from 0.75 to 0.93. From linear sweep voltammetry (LSV), the green polymer electrolyte in this work was actually stable up to 1.7 V. The consequence of the cyclic voltammetry (CV) plot suggests that the nature of charge storage at the electrode-electrolyte interfaces is a non-Faradaic process and specific capacitance is subjective by scan rates. The relatively high capacitance of 94.7 F/g at a sweep rate of 10 mV/s was achieved for EDLC assembly containing a MC-NaI system.

5.
Sci Rep ; 10(1): 18108, 2020 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-33093604

RESUMO

In the present study black tea extract (BTE) solution which is familiar for drinking was used to prepare cerium metal-complexes (Ce(III)-complex). The prepared Ce(III)-complex was characterized by Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), and UV-Vis spectroscopy. The results indicate that BTE solution is a novel green coordination chemistry approach for the synthesis of metal complexes. The outcomes signify that coordination occurs between cerium cations and polyphenols. The synthesis of metal-complexes with superior absorption performance in the visible region is a challenge for optoelectronic device applications. The suspended Ce(III)-complex in distilled water was mixed with poly (vinyl alcohol) (PVA) polymer to fabricate PVA/ Ce(III)-complex composites with controlled optical properties. The PVA/Ce(III)-complexes composite films were characterized by FTIR, XRD, and UV-Vis spectroscopy. The XRD findings confirms the amorphous structure for the synthesized Ce(III)-complexes. The addition of Ce(III)-complex into the PVA host polymer led to the growth of polymer composites with controllable small optical band gaps. It is shown by the FTIR spectra of the composite films that the functional groups of the host PVA have a vigorous interaction with the Ce(III)-complex. The XRD deconvolution on PVA composites reveals the amorphous phase enlargement with increasing Ce(III)-complex concentration. It is indicated in the atomic force microscopy (AFM) that the surface roughness in the doped PVA films increases with the increase of the Ce(III)-complex. There is a decrease in absorption edge from 5.7 to 1.7 eV. It becomes possible to recognize the type of electron transition by studying both the Tauc's model and optical dielectric loss (ɛi) parameter.

6.
Polymers (Basel) ; 12(9)2020 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-32842522

RESUMO

In the present work, a novel polymer composite electrolytes (PCEs) based on poly(vinyl alcohol) (PVA): ammonium thiocyanate (NH4SCN): Cd(II)-complex plasticized with glycerol (Gly) are prepared by solution cast technique. The film structure was examined by XRD and FTIR routes. The utmost ambient temperature DC ionic conductivity (σDC) of 2.01 × 10-3 S cm-1 is achieved. The film morphology was studied by field emission scanning electron microscopy (FESEM). The trend of σDC is further confirmed with investigation of dielectric properties. Transference numbers of ions (tion) and electrons (tel) are specified to be 0.96 and 0.04, respectively. Linear sweep voltammetry (LSV) displayed that the PCE potential window is 2.1 V. The desired mixture of activated carbon (AC) and carbon black was used to fabricate the electrodes of the EDLC. Cyclic voltammetry (CV) was carried out by sandwiching the PCEs between two carbon-based electrodes, and it revealed an almost rectangular shape. The EDLC exhibited specific capacitance, energy density, and equivalent series resistance with average of 160.07F/g, 18.01Wh/kg, and 51.05Ω, respectively, within 450 cycles. The EDLC demonstrated the initial power density as 4.065 × 103 W/Kg.

7.
Polymers (Basel) ; 12(9)2020 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-32825679

RESUMO

In the present work it was shown that low lattice energy ammonium salts are not favorable for polymer electrolyte preparation for electrochemical device applications. Polymer blend electrolytes based on chitosan:poly(ethylene oxide) (CS:PEO) incorporated with various amounts of low lattice energy NH4BF4ammonium salt have been prepared using the solution cast technique. Both structural and morphological studies were carried out to understand the phenomenon of ion association. Sharp peaks appeared in X-ray diffraction (XRD) spectra of the samples with high salt concentration. The degree of crystallinity increased from 8.52 to 65.84 as the salt concentration increased up to 40 wt.%. These are correlated to the leakage of the associated anions and cations of the salt to the surface of the polymer. The structural behaviors were further confirmed by morphological study. The morphological results revealed the large-sized protruded salts at high salt concentration. Based on lattice energy of salts, the phenomena of salt leakage were interpreted. Ammonium salts with lattice energy lower than 600 kJ/mol are not preferred for polymer electrolyte preparation due to the significant tendency of ion association among cations and anions. Electrical impedance spectroscopy was used to estimate the conductivity of the samples. It was found that the bulk resistance increased from 1.1 × 104 ohm to 0.7 × 105 ohm when the salt concentration raised from 20 wt.% to 40 wt.%, respectively; due to the association of cations and anions. The low value of direct current (DC) conductivity (7.93 × 10-7 S/cm) addressed the non-suitability of the electrolytes for electrochemical device applications. The calculated values of the capacitance over the interfaces of electrodes-electrolytes (C2) were found to drop from 1.32 × 10-6 F to 3.13 × 10-7 F with increasing salt concentration. The large values of dielectric constant at low frequencies are correlated to the electrode polarization phenomena while their decrements with rising frequency are attributed to the lag of ion polarization in respect of the fast orientation of the applied alternating current (AC) field. The imaginary part of the electric modulus shows obvious peaks known as conduction relaxation peaks.

8.
Polymers (Basel) ; 12(7)2020 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-32660095

RESUMO

In this study, solid polymer blend electrolytes (SPBEs) based on chitosan (CS) and methylcellulose (MC) incorporated with different concentrations of ammonium fluoride (NH4F) salt were synthesized using a solution cast technique. Both Fourier transformation infrared spectroscopy (FTIR) and X-ray diffraction (XRD) results confirmed a strong interaction and dispersion of the amorphous region within the CS:MC system in the presence of NH4F. To gain better insights into the electrical properties of the samples, the results of electrochemical impedance spectroscopy (EIS) were analyzed by electrical equivalent circuit (EEC) modeling. The highest conductivity of 2.96 × 10-3 S cm-1 was recorded for the sample incorporated with 40 wt.% of NH4F. Through transference number measurement (TNM) analysis, the fraction of ions was specified. The electrochemical stability of the electrolyte sample was found to be up to 2.3 V via the linear sweep voltammetry (LSV) study. The value of specific capacitance was determined to be around 58.3 F/g. The stability test showed that the electrical double layer capacitor (EDLC) system can be recharged and discharged for up to 100 cycles with an average specific capacitance of 64.1 F/g. The synthesized EDLC cell was found to exhibit high efficiency (90%). In the 1st cycle, the values of internal resistance, energy density and power density of the EDLC cell were determined to be 65 Ω, 9.3 Wh/kg and 1282 W/kg, respectively.

9.
Polymers (Basel) ; 12(6)2020 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-32599794

RESUMO

This report presents the preparation and characterizations of solid biopolymer blend electrolyte films of chitosan as cationic polysaccharide and anionic dextran (CS: Dextran) doped with ammonium iodide (NH4I) to be utilized as electrolyte and electrode separator in electrical double-layer capacitor (EDLC) devices. FTIR and XRD techniques were used to study the structural behavior of the films. From the FTIR band analysis, shifting and broadening of the bands were observed with increasing salt concentration. The XRD analysis indicates amorphousness of the blended electrolyte samples whereby the peaks underwent broadening. The analysis of the impedance spectra emphasized that incorporation of 40 wt.% of NH4I salt into polymer electrolyte exhibited a relatively high conductivity (5.16 × 10-3 S/cm). The transference number measurement (TNM) confirmed that ion (tion = 0.928) is the main charge carriers in the conduction process. The linear sweep voltammetry (LSV) revealed the extent of durability of the relatively high conducting film which was 1.8 V. The mechanism of charge storage within the fabricated EDLC has been explained to be fully capacitive behavior with no redox peaks appearance in the cyclic voltammogram (CV). From this findings, four important parameters of the EDLC; specific capacitance, equivalent series resistance, energy density and power density were calculated as 67.5 F/g, 160 ohm, 7.59 Wh/kg and 520.8 W/kg, respectively.

10.
Membranes (Basel) ; 10(6)2020 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-32517014

RESUMO

In this article, poly(ethylene oxide)-based polymer electrolyte films doped with ammonium iodide (NH4I) and plasticized with glycerol were provided by a solution casting method. In the unplasticized system, the maximum ionic conductivity of 3.96 × 10-5 S cm-1 was achieved by the electrolyte comprised of 70 wt. % PEO:30 wt. % NH4I. The conductivity was further enhanced up to (1.77×10-4 S cm-1) for the plasticized system when 10 wt. % glycerol was added to the highest conducting unplasticized one at ambient temperature. The films were characterized by various techniques to evaluate their electrochemical performance. The results of impedance spectroscopy revealed that bulk resistance (Rb) considerably decreased for the highest plasticized polymer electrolyte. The dielectric properties and electric modulus parameters were studied in detail. The LSV analysis verified that the plasticized system can be used in energy storage devices with electrochemical stability up to 1.09 V and the TNM data elucidated that the ions were the main charge carrier. The values of the ion transference number (tion) and electron transfer number (tel) were calculated. The nonappearance of any redox peaks in the cyclic voltammograms indicated that the chemical reaction had not occurred at the electrode/electrolyte interface.

11.
Int J Mol Sci ; 20(21)2019 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-31652832

RESUMO

In this work, analysis of ion transport parameters of polymer blend electrolytes incorporated with magnesium trifluoromethanesulfonate (Mg(CF3SO3)2) was carried out by employing the Trukhan model. A solution cast technique was used to obtain the polymer blend electrolytes composed of chitosan (CS) and poly (2-ethyl-2-oxazoline) (POZ). From X-ray diffraction (XRD) patterns, improvement in amorphous phase for the blend samples has been observed in comparison to the pure state of CS. From impedance plot, bulk resistance (Rb) was found to decrease with increasing temperature. Based on direct current (DC) conductivity (σdc) patterns, considerations on the ion transport models of Arrhenius and Vogel-Tammann-Fulcher (VTF) were given. Analysis of the dielectric properties was carried out at different temperatures and the obtained results were linked to the ion transport mechanism. It is demonstrated in the real part of electrical modulus that chitosan-salt systems are extremely capacitive. The asymmetric peak of the imaginary part (Mi) of electric modulus indicated that there is non-Debye type of relaxation for ions. From frequency dependence of dielectric loss (ε″) and the imaginary part (Mi) of electric modulus, suitable coupling among polymer segmental and ionic motions was identified. Two techniques were used to analyze the viscoelastic relaxation dynamic of ions. The Trukhan model was used to determine the diffusion coefficient (D) by using the frequency related to peak frequencies and loss tangent maximum heights (tanδmax). The Einstein-Nernst equation was applied to determine the carrier number density (n) and mobility. The ion transport parameters, such as D, n and mobility (µ), at room temperature, were found to be 4 × 10-5 cm2/s, 3.4 × 1015 cm-3, and 1.2 × 10-4 cm2/Vs, respectively. Finally, it was shown that an increase in temperature can also cause these parameters to increase.


Assuntos
Quitosana/análogos & derivados , Poliaminas/química , Polieletrólitos/química , Elasticidade , Técnicas Eletroquímicas/métodos , Magnésio/química , Mesilatos/química , Viscosidade
12.
Nanomaterials (Basel) ; 8(1)2018 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-29342977

RESUMO

Due to an oversight during production, the authors wish to make the following correction to reference [65] of this paper [...].

13.
Nanomaterials (Basel) ; 7(10)2017 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-28974025

RESUMO

Liquid crystals are an integral part of a mature display technology, also establishing themselves in other applications, such as spatial light modulators, telecommunication technology, photonics, or sensors, just to name a few of the non-display applications. In recent years, there has been an increasing trend to add various nanomaterials to liquid crystals, which is motivated by several aspects of materials development. (i) addition of nanomaterials can change and thus tune the properties of the liquid crystal; (ii) novel functionalities can be added to the liquid crystal; and (iii) the self-organization of the liquid crystalline state can be exploited to template ordered structures or to transfer order onto dispersed nanomaterials. Much of the research effort has been concentrated on thermotropic systems, which change order as a function of temperature. Here we review the other side of the medal, the formation and properties of ordered, anisotropic fluid phases, liquid crystals, by addition of shape-anisotropic nanomaterials to isotropic liquids. Several classes of materials will be discussed, inorganic and mineral liquid crystals, viruses, nanotubes and nanorods, as well as graphene oxide.

14.
2d Mater ; 4(4)2017.
Artigo em Inglês | MEDLINE | ID: mdl-33282320

RESUMO

Graphene oxide (GO) forms well ordered liquid crystal (LC) phases in polar solvents. Here, we map the lyotropic phase diagram of GO as a function of the lateral dimensions of the GO flakes, their concentration, geometrical confinement configuration and solvent polarity. GO flakes were prepared in water and transferred into other polar solvents. Polarising optical microscopy (POM) was used to determine the phase evolution through the isotropic-biphasic-nematic transitions of the GO LC. We report that the confinement volume and geometry relative to the particle size is critical for the observation of the lyotropic phase, specifically, this determines the low-end concentration limit for the detection of the GO LC. Additionally, a solvent with higher polarisability stabilises the LC phases at lower concentrations and smaller flake sizes. GO LCs have been proposed for a range of applications from display technologies to conductive fibres, and the behaviour of LC phase formation under confinement imposes a limit on miniaturisation of the dimensions of such GO LC systems which could significantly impact on their potential applications.

15.
Sci Rep ; 6: 31885, 2016 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-27555475

RESUMO

Graphene oxide (GO) flakes of different sizes were prepared and dispersed in isotropic and nematic (anisotropic) fluid media. The dielectric relaxation behaviour of GO-dispersions was examined for a wide temperature (25-60 (o)C) and frequency range (100 Hz-2 MHz). The mixtures containing GO flakes exhibited varying dielectric relaxation processes, depending on the size of the flakes and the elastic properties of the dispersant fluid. Relaxation frequencies of the GO doped isotropic media, such as isopropanol IPA, were observed to be much lower than the GO doped thermotropic nematic medium 5CB. It is anticipated that the slow relaxation frequencies (~10 kHz) could be resulting from the relaxation modes of the GO flakes while the fast relaxation frequencies (~100 kHz) could indicate strongly slowed down molecular modes of the nematogenic molecules, which are anchored to the GO flakes via dispersion interactions. The relaxation frequencies decreased as the size of the GO flakes in the isotropic solvent was increased. Polarizing microscopy showed that GO flakes with a mean diameter of 10 µm, dispersed in water, formed a lyotropic nematic liquid crystal phase. This lyotropic nematic exhibited the slowest dielectric relaxation process, with relaxation frequencies in the order of 2 kHz, as compared to the GO-isotropic suspension and the GO-doped 5CB.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...