Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 11(1): 16682, 2021 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-34404838

RESUMO

The Coronavirus Disease 2019 (COVID-19) global pandemic has threatened the lives of people worldwide and posed considerable challenges. Early and accurate screening of infected people is vital for combating the disease. To help with the limited quantity of swab tests, we propose a machine learning prediction model to accurately diagnose COVID-19 from clinical and/or routine laboratory data. The model exploits a new ensemble-based method called the deep forest (DF), where multiple classifiers in multiple layers are used to encourage diversity and improve performance. The cascade level employs the layer-by-layer processing and is constructed from three different classifiers: extra trees, XGBoost, and LightGBM. The prediction model was trained and evaluated on two publicly available datasets. Experimental results show that the proposed DF model has an accuracy of 99.5%, sensitivity of 95.28%, and specificity of 99.96%. These performance metrics are comparable to other well-established machine learning techniques, and hence DF model can serve as a fast screening tool for COVID-19 patients at places where testing is scarce.


Assuntos
Teste para COVID-19/métodos , COVID-19/diagnóstico , Aprendizado Profundo , Testes Hematológicos , COVID-19/sangue , Conjuntos de Dados como Assunto , Humanos , Programas de Rastreamento/métodos , Curva ROC
2.
Inform Med Unlocked ; 21: 100449, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33102686

RESUMO

BACKGROUND AND OBJECTIVES: The pandemic of novel coronavirus disease 2019 (COVID-19) has severely impacted human society with a massive death toll worldwide. There is an urgent need for early and reliable screening of COVID-19 patients to provide better and timely patient care and to combat the spread of the disease. In this context, recent studies have reported some key advantages of using routine blood tests for initial screening of COVID-19 patients. In this article, first we present a review of the emerging techniques for COVID-19 diagnosis using routine laboratory and/or clinical data. Then, we propose ERLX which is an ensemble learning model for COVID-19 diagnosis from routine blood tests. METHOD: The proposed model uses three well-known diverse classifiers, extra trees, random forest and logistic regression, which have different architectures and learning characteristics at the first level, and then combines their predictions by using a second level extreme gradient boosting (XGBoost) classifier to achieve a better performance. For data preparation, the proposed methodology employs a KNNImputer algorithm to handle null values in the dataset, isolation forest (iForest) to remove outlier data, and a synthetic minority oversampling technique (SMOTE) to balance data distribution. For model interpretability, features importance are reported by using the SHapley Additive exPlanations (SHAP) technique. RESULTS: The proposed model was trained and evaluated by using a publicly available data set from Albert Einstein Hospital in Brazil, which consisted of 5644 data samples with 559 confirmed COVID-19 cases. The ensemble model achieved outstanding performance with an overall accuracy of 99.88% [95% CI: 99.6-100], AUC of 99.38% [95% CI: 97.5-100], a sensitivity of 98.72% [95% CI: 94.6-100] and a specificity of 99.99% [95% CI: 99.99-100]. DISCUSSION: The proposed model revealed better performance when compared against existing state-of-the-art studies (Banerjee et al., 2020; de Freitas Barbosa et al., 2020; de Moraes Batista et al., 2020; Soares et al., 2020) [3,22,56,71] for the same set of features employed by them. As compared to the best performing Bayes Net model (de Freitas Barbosa et al., 2020) [22] average accuracy of 95.159%, ERLX achieved an average accuracy of 99.94%. In comparison with AUC of 85% reported by the SVM model (de Moraes Batista et al., 2020) [56], ERLX obtained AUC of 99.77% in addition to improvements in sensitivity, and specificity. As compared with ER-COV model (Soares et al., 2020) [71] average sensitivity of 70.25% and specificity of 85.98%, ERLX model achieved sensitivity of 99.47% and specificity of 99.99%. The ERLX model obtained a considerably higher score as compared with ANN model (Banerjee et al., 2020) [3] in all performance metrics. Therefore, the model presented is robust and can be deployed for reliable early and rapid screening of COVID-19 patients.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...