Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Hypertens ; 42(6): 1027-1038, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38690904

RESUMO

OBJECTIVE: Reno-renal reflexes are disturbed in cardiovascular and hypertensive conditions when elevated levels of pro-inflammatory mediators/cytokines are present within the kidney. We hypothesised that exogenously administered inflammatory cytokines tumour necrosis factor alpha (TNF-α) and interleukin (IL)-1ß modulate the renal sympatho-excitatory response to chemical stimulation of renal pelvic sensory nerves. METHODS: In anaesthetised rats, intrarenal pelvic infusions of vehicle [0.9% sodium chloride (NaCl)], TNF-α (500 and 1000 ng/kg) and IL-1ß (1000 ng/kg) were maintained for 30 min before chemical activation of renal pelvic sensory receptors was performed using randomized intrarenal pelvic infusions of hypertonic NaCl, potassium chloride (KCl), bradykinin, adenosine and capsaicin. RESULTS: The increase in renal sympathetic nerve activity (RSNA) in response to intrarenal pelvic hypertonic NaCl was enhanced during intrapelvic TNF-α (1000 ng/kg) and IL-1ß infusions by almost 800% above vehicle with minimal changes in mean arterial pressure (MAP) and heart rate (HR). Similarly, the RSNA response to intrarenal pelvic adenosine in the presence of TNF-α (500 ng/kg), but not IL-1ß, was almost 200% above vehicle but neither MAP nor HR were changed. There was a blunted sympatho-excitatory response to intrapelvic bradykinin in the presence of TNF-α (1000 ng/kg), but not IL-1ß, by almost 80% below vehicle, again without effect on either MAP or HR. CONCLUSION: The renal sympatho-excitatory response to renal pelvic chemoreceptor stimulation is modulated by exogenous TNF-α and IL-1ß. This suggests that inflammatory mediators within the kidney can play a significant role in modulating the renal afferent nerve-mediated sympatho-excitatory response.


Assuntos
Interleucina-1beta , Rim , Sistema Nervoso Simpático , Fator de Necrose Tumoral alfa , Animais , Interleucina-1beta/farmacologia , Ratos , Rim/inervação , Rim/efeitos dos fármacos , Masculino , Sistema Nervoso Simpático/efeitos dos fármacos , Sistema Nervoso Simpático/fisiologia , Ratos Sprague-Dawley , Frequência Cardíaca/efeitos dos fármacos , Bradicinina/farmacologia , Reflexo/efeitos dos fármacos , Pressão Sanguínea/efeitos dos fármacos , Adenosina/administração & dosagem , Adenosina/farmacologia , Solução Salina Hipertônica/administração & dosagem , Solução Salina Hipertônica/farmacologia
3.
Exp Physiol ; 108(2): 268-279, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36454195

RESUMO

NEW FINDINGS: What is the central question of this study? Are renal functional responses to intrarenal angiotensin 1-7 (Ang (1-7)) infusion dependent on the level of the endogenous renin-angiotensin system (RAS) in the two-kidney one-clip (2K1C) and deoxycorticosterone acetate (DOCA)-salt animal models of hypertension? What is the main finding and its importance? The renal actions of Ang (1-7) are dependent on the relative endogenous levels of each arm of the classical angiotensin II-angiotensin II type 1 receptor (AT1 R) axis and those of the Ang (1-7)-Mas receptor axis. These findings support the hypothesis that a balance exists between the intrarenal classical and novel arms of the RAS, and in particular the relative abundance of AT1 R to Mas receptor, which may to a large extent determine the renal excretory response to Ang (1-7) infusion. ABSTRACT: This study investigated the action of angiotensin 1-7 (Ang (1-7)) on renal haemodynamic and excretory function in the two-kidney one-clip (2K1C) and deoxycorticosterone acetate (DOCA)-salt rat models of hypertension, in which the endogenous renin-angiotensin system (RAS) activity was likely to be raised or lowered, respectively. Rats were anaesthetised and prepared for the measurement of mean arterial pressure and kidney function during renal interstitial infusion of Ang (1-7) or saline. Kidney tissue concentrations of angiotensin II (Ang II) and Ang (1-7) were determined. Intrarenal infusion of Ang (1-7) into the clipped kidney of 2K1C rats increased urine flow (UV), absolute (UNa V) and fractional sodium (FENa ) excretions by 110%, 214% and 147%, respectively. Renal Ang II concentrations of the clipped kidney were increased with no major changes in Ang (1-7) concentration. By contrast, Ang (1-7) infusion decreased UV, UNa V, and FENa by 27%, 24% and 21%, respectively in the non-clipped kidney in which tissue Ang (1-7) concentrations were increased, but renal Ang II concentrations were unchanged compared to sham animals. Ang (1-7) infusion in DOCA-salt rats had minimal effects on glomerular filtration rate but significantly decreased UV, UNa V and FENa by ∼30%. Renal Ang (1-7) concentrations were higher and Ang II concentrations were lower in DOCA-salt rats compared to sham rats. These findings demonstrate that the intrarenal infusion of exogenous Ang (1-7) elicits different renal excretory responses the magnitude of which is dependent on the balance between the endogenous renal Ang II-AT1 receptor axis and Ang (1-7)-Mas receptor axis.


Assuntos
Acetato de Desoxicorticosterona , Hipertensão , Ratos , Animais , Angiotensina II/farmacologia , Angiotensina II/fisiologia , Acetato de Desoxicorticosterona/farmacologia , Rim , Hipertensão/induzido quimicamente , Hemodinâmica , Acetatos/farmacologia
4.
J Hypertens ; 40(1): 46-64, 2022 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-34433765

RESUMO

OBJECTIVE: In this study, we hypothesized that excitatory reno-renal reflex control of sympathetic outflow is enhanced in rats exposed to chronic intermittent hypoxia (CIH) with established hypertension. METHODS: Under anaesthesia, renal sensory nerve endings in the renal pelvic wall were chemically activated using bradykinin (150, 400 and 700 µmol/l) and capsaicin (1.3 µmol/l), and cardiovascular parameters and renal sympathetic nerve activity (RSNA) were measured. RESULTS: CIH-exposed rats were hypertensive with elevated basal heart rate and increased basal urine flow compared with sham. The intrarenal pelvic infusion of bradykinin was associated with contralateral increase in the RSNA and heart rate, without concomitant changes in blood pressure. This was associated with a drop in the glomerular filtration rate, which was significant during a 5 min period after termination of the infusion but without significant changes in urine flow and absolute sodium excretion. In response to intrarenal pelvic infusion of 700 µmol/l bradykinin, the increases in RSNA and heart rate were blunted in CIH-exposed rats compared with sham rats. Conversely, the intrarenal pelvic infusion of capsaicin evoked an equivalent sympathoexcitatory effect in CIH-exposed and sham rats. The blockade of bradykinin type 1 receptors (BK1R) suppressed the bradykinin-induced increase in RSNA by ∼33%, with a greater suppression obtained when bradykinin type 2 receptors (BK2R) and BK1R were contemporaneously blocked (∼66%). CONCLUSION: Our findings reveal that the bradykinin-dependent excitatory reno-renal reflex does not contribute to CIH-induced sympathetic hyperactivity and hypertension. Rather, there is evidence that the excitatory reno-renal reflex is suppressed in CIH-exposed rats, which might relate to a downregulation of BK2R.


Assuntos
Bradicinina , Sistema Nervoso Simpático , Animais , Pressão Sanguínea , Bradicinina/farmacologia , Hipóxia , Rim , Ratos , Reflexo
6.
Clin Exp Pharmacol Physiol ; 48(4): 585-596, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33352624

RESUMO

This study examined the effect of leptin and orexin-A on autonomic baroreflex control in conscious Wistar rats exposed to high-fat (45% fat) or normal (3.4%) diet for 4 weeks. Renal sympathetic nerve activity (RSNA), mean arterial pressure (MAP) and heart rate (HR) were monitored during the generation of baroreflex gain curves and acute volume expansion (VEP). Intracerebroventricular (ICV) leptin (1 µg/min) increased RSNA in the normal diet group (0.31 ± 0.04 vs 0.23 ± 0.03 mV/s) and MAP in the high-fat diet group (115 ± 5 vs 105 ± 5 mm Hg, P < .05). Orexin-A (50 ng/min) increased RSNA, HR and MAP in the high-fat diet group (0.26 ± 0.03 vs 0.22 ± 0.02 mV/s, 454 ± 8 vs 417 ± 12 beats/min, 117 ± 1 vs 108 ± 1 mm Hg) and the normal diet group (0.18 ± 0.05 vs 0.17 ± 0.05 mV/s, 465 ± 10 vs 426 ± 6 beats/min, 116 ± 2 vs 104 ± 3 mm Hg). Baroreflex sensitivity for RSNA was increased during ICV leptin by 50% in the normal diet group, compared to 14% in the high-fat diet group (P < .05). Similarly, orexin-A increased baroreflex sensitivity by 56% and 50% in the high-fat and normal diet groups, respectively (all P < .05). During ICV saline, VEP decreased RSNA by 31 ± 5% (P < .05) after 10 minutes and the magnitude of this response was blunted during ICV infusion of leptin (17 ± 2%, P < .05) but not orexin-A in the normal diet group. RSNA response to VEP was not changed during ICV leptin or orexin-A in the high-fat diet group. These findings indicate possible central roles for leptin and orexin-A in modulating the baroreflexes under normal or increased fat intake in conscious rats and potential therapeutic approaches for obesity associated hypertension.


Assuntos
Barorreflexo , Dieta Hiperlipídica , Animais , Pressão Sanguínea/efeitos dos fármacos , Frequência Cardíaca/efeitos dos fármacos , Rim/efeitos dos fármacos , Ratos , Ratos Wistar , Sistema Nervoso Simpático
7.
Am J Physiol Renal Physiol ; 320(1): F1-F16, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-33166181

RESUMO

We examined the effects of exposure to chronic intermittent hypoxia (CIH) on baroreflex control of renal sympathetic nerve activity (RSNA) and renal excretory responses to volume expansion (VE) before and after intrarenal transient receptor potential vanilloid 1 (TRPV1) blockade by capsaizepine (CPZ). Male Wistar rats were exposed to 96 cycles of hypoxia per day for 14 days (CIH) or normoxia. Urine flow and absolute Na+ excretion during VE were less in CIH-exposed rats, but the progressive decrease in RSNA during VE was preserved. Assessment of the high-pressure baroreflex revealed an increase in the operating and response range of RSNA and decreased slope in CIH-exposed rats with substantial hypertension [+19 mmHg basal mean arterial pressure (MAP)] but not in a second cohort with modest hypertension (+12 mmHg). Intrarenal CPZ caused diuresis, natriuresis, and a reduction in MAP in sham-exposed (sham) and CIH-exposed rats. After intrarenal CPZ, diuretic and natriuretic responses to VE in CIH-exposed rats were equivalent to those of sham rats. TRPV1 expression in the renal pelvic wall was similar in both experimental groups. Exposure to CIH did not elicit glomerular hypertrophy, renal inflammation, or oxidative stress. We conclude that exposure to CIH 1) does not impair the low-pressure baroreflex control of RSNA; 2) has modest effects on the high-pressure baroreflex control of RSNA, most likely indirectly due to hypertension; 3) can elicit hypertension in the absence of kidney injury; and 4) impairs diuretic and natriuretic responses to fluid overload. Our results suggest that exposure to CIH causes renal dysfunction, which may be relevant to obstructive sleep apnea.


Assuntos
Barorreflexo , Volume Sanguíneo , Diurese , Hipóxia/fisiopatologia , Rim/inervação , Sistema Nervoso Simpático/fisiopatologia , Animais , Pressão Arterial , Barorreflexo/efeitos dos fármacos , Volume Sanguíneo/efeitos dos fármacos , Capsaicina/análogos & derivados , Capsaicina/farmacologia , Doença Crônica , Modelos Animais de Doenças , Diurese/efeitos dos fármacos , Frequência Cardíaca , Hipóxia/metabolismo , Hipóxia/patologia , Infusões Intravenosas , Rim/metabolismo , Rim/patologia , Masculino , Natriurese , Ratos Wistar , Solução Salina/administração & dosagem , Sistema Nervoso Simpático/efeitos dos fármacos , Canais de Cátion TRPV/antagonistas & inibidores , Fatores de Tempo , Urodinâmica
8.
Front Physiol ; 10: 465, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31105584

RESUMO

Renal sensory nerves are important in the regulation of body fluid and electrolyte homeostasis, and blood pressure. Activation of renal mechanoreceptor afferents triggers a negative feedback reno-renal reflex that leads to the inhibition of sympathetic nervous outflow. Conversely, activation of renal chemoreceptor afferents elicits reflex sympathoexcitation. Dysregulation of reno-renal reflexes by suppression of the inhibitory reflex and/or activation of the excitatory reflex impairs blood pressure control, predisposing to hypertension. Obstructive sleep apnoea syndrome (OSAS) is causally related to hypertension. Renal denervation in patients with OSAS or in experimental models of chronic intermittent hypoxia (CIH), a cardinal feature of OSAS due to recurrent apnoeas (pauses in breathing), results in a decrease in circulating norepinephrine levels and attenuation of hypertension. The mechanism of the beneficial effect of renal denervation on blood pressure control in models of CIH and OSAS is not fully understood, since renal denervation interrupts renal afferent signaling to the brain and sympathetic efferent signals to the kidneys. Herein, we consider the currently proposed mechanisms involved in the development of hypertension in CIH disease models with a focus on oxidative and inflammatory mediators in the kidneys and their potential influence on renal afferent control of blood pressure, with wider consideration of the evidence available from a variety of hypertension models. We draw focus to the potential contribution of aberrant renal afferent signaling in the development, maintenance and progression of high blood pressure, which may have relevance to CIH-induced hypertension.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...