Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Stem Cell Rev Rep ; 20(4): 900-930, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38393666

RESUMO

BACKGROUND: COVID-19 rapidly escalated into a worldwide pandemic with elevated infectivity even from asymptomatic patients. Complications can lead to severe pneumonia and acute respiratory distress syndrome (ARDS), which are the main contributors to death. Because of their regenerative and immunomodulatory capacities, stem cells and their derived extracellular vesicles (EVs) are perceived as promising therapies against severe pulmonary conditions, including those associated with COVID-19. Herein, we evaluate the safety and efficacy of stem cell EVs in treating COVID-19 and complicating pneumonia, acute lung injury, and ARDS. We also cover relevant preclinical studies to recapitulate the current progress in stem cell EV-based therapy. METHODS: Using PubMed, Cochrane Central Register of Controlled Trials, Scopus, and Web of Science, we searched for all English-language published studies (2000-2023) that used stem cell EVs as a therapy for COVID-19, ARDS, or pneumonia. The risk of bias (ROB) was assessed for all studies. RESULTS: Forty-eight studies met our inclusion criteria. Various-sized EVs derived from different types of stem cells were reported as a potentially safe and effective therapy to attenuate the cytokine storm induced by COVID-19. EVs alleviated inflammation and regenerated the alveolar epithelium by decreasing apoptosis, proinflammatory cytokines, neutrophil infiltration, and M2 macrophage polarization. They also prevented fibrin production and promoted the production of anti-inflammatory cytokines and endothelial cell junction proteins. CONCLUSION: Similar to their parental cells, stem cell EVs mediate lung tissue regeneration by targeting multiple pathways and thus hold promise in promoting the recovery of COVID-19 patients and improving the survival rate of severely affected patients.


Assuntos
COVID-19 , Vesículas Extracelulares , SARS-CoV-2 , Células-Tronco , Humanos , Vesículas Extracelulares/transplante , Vesículas Extracelulares/imunologia , Vesículas Extracelulares/metabolismo , COVID-19/terapia , COVID-19/imunologia , SARS-CoV-2/imunologia , Células-Tronco/citologia , Células-Tronco/metabolismo , Imunomodulação , Animais , Síndrome do Desconforto Respiratório/terapia , Síndrome do Desconforto Respiratório/virologia , Síndrome do Desconforto Respiratório/imunologia
2.
J Med Internet Res ; 24(9): e37869, 2022 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-36066943

RESUMO

BACKGROUND: Digital health solutions can provide populations with musculoskeletal pain with high-reach, low-cost, easily accessible, and scalable patient education and self-management interventions that meet the time and resource restrictions. OBJECTIVE: The main objective of this study was to determine the effectiveness of digital health interventions for people with musculoskeletal pain conditions (ie, low back pain, neck pain, shoulder pain, knee pain, elbow pain, ankle pain, and whiplash). METHODS: A systematic review and meta-analysis was conducted. We searched PubMed and Cochrane Central Register of Controlled Trials (from 1974 to August 2021) and selected randomized controlled trials of digital health interventions in the target population of patients with musculoskeletal pain with a minimum follow-up of 1 month. A total of 2 researchers independently screened and extracted the data. RESULTS: A total of 56 eligible studies were included covering 9359 participants, with a mean follow-up of 25 (SD 15.48) weeks. In moderate-quality evidence, digital health interventions had a small effect on pain (standardized mean difference [SMD] 0.19, 95% CI 0.06-0.32), disability (SMD 0.14, 95% CI 0.03-0.25), quality of life (SMD 0.22, 95% CI 0.07-0.36), emotional functioning (SMD 0.24, 95% CI 0.12-0.35), and self-management (SMD 0.14, 95% CI 0.05-0.24). CONCLUSIONS: Moderate-quality evidence supports the conclusion that digital health interventions are effective in reducing pain and improving functioning and self-management of musculoskeletal pain conditions. Low-quality evidence indicates that digital health interventions can improve the quality of life and global treatment. Little research has been conducted on the influence of digital health on expenses, knowledge, overall improvement, range of motion, muscle strength, and implementation fidelity. TRIAL REGISTRATION: PROSPERO CRD42022307504; https://tinyurl.com/2cd25hus.


Assuntos
Pessoas com Deficiência , Dor Lombar , Dor Musculoesquelética , Humanos , Dor Musculoesquelética/terapia , Qualidade de Vida , Ensaios Clínicos Controlados Aleatórios como Assunto
3.
Gigascience ; 112022 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-35579553

RESUMO

BACKGROUND: Deep learning enables accurate high-resolution mapping of cells and tissue structures that can serve as the foundation of interpretable machine-learning models for computational pathology. However, generating adequate labels for these structures is a critical barrier, given the time and effort required from pathologists. RESULTS: This article describes a novel collaborative framework for engaging crowds of medical students and pathologists to produce quality labels for cell nuclei. We used this approach to produce the NuCLS dataset, containing >220,000 annotations of cell nuclei in breast cancers. This builds on prior work labeling tissue regions to produce an integrated tissue region- and cell-level annotation dataset for training that is the largest such resource for multi-scale analysis of breast cancer histology. This article presents data and analysis results for single and multi-rater annotations from both non-experts and pathologists. We present a novel workflow that uses algorithmic suggestions to collect accurate segmentation data without the need for laborious manual tracing of nuclei. Our results indicate that even noisy algorithmic suggestions do not adversely affect pathologist accuracy and can help non-experts improve annotation quality. We also present a new approach for inferring truth from multiple raters and show that non-experts can produce accurate annotations for visually distinctive classes. CONCLUSIONS: This study is the most extensive systematic exploration of the large-scale use of wisdom-of-the-crowd approaches to generate data for computational pathology applications.


Assuntos
Neoplasias da Mama , Crowdsourcing , Neoplasias da Mama/patologia , Núcleo Celular , Crowdsourcing/métodos , Feminino , Humanos , Aprendizado de Máquina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...