Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 99
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Phys Rev E ; 99(6-1): 062131, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31330667

RESUMO

The exchange of energy between a classical open system and its environment can be analyzed for a single run of an experiment using the phase-space trajectory of the system. By contrast, in the quantum regime such energy exchange processes must be defined for an ensemble of runs of the same experiment based on the reduced system density matrix. Single-shot approaches based on stochastic wave functions have been proposed for quantum systems that are continuously monitored or weakly coupled to a heat bath. However, for systems strongly coupled to the environment and not continuously monitored, a single-shot analysis has not been attempted because no system wave function exists for such systems within the standard formulation of quantum theory. Using the notion of the conditional wave function of a quantum system, we derive here an exact formula for the rate of total energy change in an open quantum system, valid for arbitrary coupling between the system and the environment. In particular, this allows us to identify three distinct contributions to the total energy flow: an external contribution coming from the explicit time dependence of the Hamiltonian, an interaction contribution associated with the interaction part of the Hamiltonian, and an entanglement contribution, directly related to the presence of entanglement between the system and its environment. Given the close connection between weak values and the conditional wave function, the approach presented here provides a new avenue for experimental studies of energy fluctuations in open quantum systems.

3.
Sci Rep ; 8(1): 6325, 2018 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-29679059

RESUMO

Superconducting microwave circuits show great potential for practical quantum technological applications such as quantum information processing. However, fast and on-demand initialization of the quantum degrees of freedom in these devices remains a challenge. Here, we experimentally implement a tunable heat sink that is potentially suitable for the initialization of superconducting qubits. Our device consists of two coupled resonators. The first resonator has a high quality factor and a fixed frequency whereas the second resonator is designed to have a low quality factor and a tunable resonance frequency. We engineer the low quality factor using an on-chip resistor and the frequency tunability using a superconducting quantum interference device. When the two resonators are in resonance, the photons in the high-quality resonator can be efficiently dissipated. We show that the corresponding loaded quality factor can be tuned from above 105 down to a few thousand at 10 GHz in good quantitative agreement with our theoretical model.

4.
Phys Rev Lett ; 120(1): 017401, 2018 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-29350948

RESUMO

We study the influence of spatial confinement on the second-order temporal coherence of the emission from a semiconductor microcavity in the strong coupling regime. The confinement, provided by etched micropillars, has a favorable impact on the temporal coherence of solid state quasicondensates that evolve in our device above threshold. By fitting the experimental data with a microscopic quantum theory based on a quantum jump approach, we scrutinize the influence of pump power and confinement and find that phonon-mediated transitions are enhanced in the case of a confined structure, in which the modes split into a discrete set. By increasing the pump power beyond the condensation threshold, temporal coherence significantly improves in devices with increased spatial confinement, as revealed in the transition from thermal to coherent statistics of the emitted light.

5.
J Chem Phys ; 147(14): 144901, 2017 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-29031268

RESUMO

The efficiency of nanopore-based polymer sensing devices depends on the fast capture of anionic polyelectrolytes by negatively charged pores. This requires the cancellation of the electrostatic barrier associated with repulsive polymer-pore interactions. We develop a correlation-corrected theory to show that the barrier experienced by the polymer can be efficiently overcome by the addition of multivalent cations into the electrolyte solution. Cation adsorption into the pore enhances the screening ability of the pore medium with respect to the bulk reservoir which translates into an attractive force on the polymer. Beyond a critical multivalent cation concentration, this correlation-induced attraction overcomes the electrostatic barrier and triggers the adsorption of the polymer by the like-charged pore. It is shown that like-charge polymer-pore attraction is suppressed by monovalent salt but enhanced by the membrane charge strength and the pore confinement. Our predictions may provide enhanced control over polymer motion in translocation experiments.

6.
Sci Rep ; 7(1): 11966, 2017 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-28931841

RESUMO

Understanding how edge misfit dislocations (MDs) form in a GeSi/Si(001) film has been a long standing issue. The challenge is to find a mechanism accounting for the presence of these dislocations at the interface since they are not mobile and cannot nucleate at the surface and glide towards the interface. Furthermore, experiments can hardly detect the nucleation and early stages of growth because of the short time scale involved. Here we present the first semi-quantitative atomistic calculation of the formation of edge dislocations in such films. We use a global optimization method and density functional theory calculations, combined with computations using potential energy functions to identify the best mechanisms. We show that those previously suggested are relevant only for a low film strain and we propose a new mechanism which accounts for the formation of edge dislocations at high film strain. In this one, a 60° MD nucleates as a "split" half-loop with two branches gliding on different planes. One branch belongs to the glide plane of a complementary 60° MD and therefore strongly favors the formation of the complementary MD which is immediately combined with the first MD to form an edge MD.

7.
J Chem Phys ; 147(11): 114904, 2017 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-28938821

RESUMO

Polymer translocation experiments typically involve anionic polyelectrolytes such as DNA molecules driven through negatively charged nanopores. Quantitative modeling of polymer capture to the nanopore followed by translocation therefore necessitates the consideration of the electrostatic barrier resulting from like-charge polymer-pore interactions. To this end, in this work we couple mean-field level electrohydrodynamic equations with the Smoluchowski formalism to characterize the interplay between the electrostatic barrier, the electrophoretic drift, and the electro-osmotic liquid flow. In particular, we find that due to distinct ion density regimes where the salt screening of the drift and barrier effects occurs, there exists a characteristic salt concentration maximizing the probability of barrier-limited polymer capture into the pore. We also show that in the barrier-dominated regime, the polymer translocation time τ increases exponentially with the membrane charge and decays exponentially fast with the pore radius and the salt concentration. These results suggest that the alteration of these parameters in the barrier-driven regime can be an efficient way to control the duration of the translocation process and facilitate more accurate measurements of the ionic current signal in the pore.

8.
Phys Rev E ; 94(3-1): 032138, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27739794

RESUMO

We study the equivalence between the recently proposed finite environment quantum jump model and a master equation approach. We derive microscopically the master equation for a qubit coupled to a finite bosonic environment and show that the master equation is equivalent to the finite environment quantum jump model. We analytically show that both the methods produce the same moments of work when the work is defined through the two-measurement protocol excluding the interaction energy. However, when compared to the work moments computed using the power operator approach, we find a difference in the form of the work moments. To numerically verify our results, we study a qubit coupled to an environment consisting of ten two-level systems.

9.
J Chem Phys ; 145(1): 014902, 2016 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-27394120

RESUMO

We develop an analytical theory that accounts for the image and surface charge interactions between a charged dielectric membrane and a DNA molecule translocating through the membrane. Translocation events through neutral carbon-based membranes are driven by a competition between the repulsive DNA-image-charge interactions and the attractive coupling between the DNA segments on the trans and the cis sides of the membrane. The latter effect is induced by the reduction of the coupling by the dielectric membrane. In strong salt solutions where the repulsive image-charge effects dominate the attractive trans-cis coupling, the DNA molecule encounters a translocation barrier of ≈10 kBT. In dilute electrolytes, the trans-cis coupling takes over image-charge forces and the membrane becomes a metastable attraction point that can trap translocating polymers over long time intervals. This mechanism can be used in translocation experiments in order to control DNA motion by tuning the salt concentration of the solution.


Assuntos
Eletrólitos/química , Modelos Químicos , Polímeros/química , Eletricidade Estática , Algoritmos , Membrana Celular/química , DNA/química , Permeabilidade , Soluções
10.
Phys Rev E ; 93(6): 062106, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27415207

RESUMO

Measuring the thermodynamic properties of open quantum systems poses a major challenge. A calorimetric detection has been proposed as a feasible experimental scheme to measure work and fluctuation relations in open quantum systems. However, the detection requires a finite size for the environment, which influences the system dynamics. This process cannot be modeled with the standard stochastic approaches. We develop a quantum jump model suitable for systems coupled to a finite-size environment. We use the method to study the common fluctuation relations and prove that they are satisfied.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA