Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
1.
bioRxiv ; 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38293199

RESUMO

Accurate identification of human leukocyte antigen (HLA) alleles is essential for various clinical and research applications, such as transplant matching and drug sensitivities. Recent advances in RNA-seq technology have made it possible to impute HLA types from sequencing data, spurring the development of a large number of computational HLA typing tools. However, the relative performance of these tools is unknown, limiting the ability for clinical and biomedical research to make informed choices regarding which tools to use. Here we report the study design of a comprehensive benchmarking of the performance of 12 HLA callers across 682 RNA-seq samples from 8 datasets with molecularly defined gold standard at 5 loci, HLA-A, -B, -C, -DRB1, and -DQB1. For each HLA typing tool, we will comprehensively assess their accuracy, compare default with optimized parameters, and examine for discrepancies in accuracy at the allele and loci levels. We will also evaluate the computational expense of each HLA caller measured in terms of CPU time and RAM. We also plan to evaluate the influence of read length over the HLA region on accuracy for each tool. Most notably, we will examine the performance of HLA callers across European and African groups, to determine discrepancies in accuracy associated with ancestry. We hypothesize that RNA-Seq HLA callers are capable of returning high-quality results, but the tools that offer a good balance between accuracy and computational expensiveness for all ancestry groups are yet to be developed. We believe that our study will provide clinicians and researchers with clear guidance to inform their selection of an appropriate HLA caller.

2.
Front Immunol ; 14: 1236514, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37928542

RESUMO

Background: Allogeneic hematopoietic stem cell transplant remains the most effective strategy for patients with high-risk acute myeloid leukemia (AML). Leukemia-specific neoantigens presented by the major histocompatibility complexes (MHCs) are recognized by the T cell receptors (TCR) triggering the graft-versus-leukemia effect. A unique TCR signature is generated by a complex V(D)J rearrangement process to form TCR capable of binding to the peptide-MHC. The generated TCR repertoire undergoes dynamic changes with disease progression and treatment. Method: Here we applied two different computational tools (TRUST4 and MIXCR) to extract the TCR sequences from RNA-seq data from The Cancer Genome Atlas (TCGA) and examine the association between features of the TCR repertoire in adult patients with AML and their clinical and molecular characteristics. Results: We found that only ~30% of identified TCR CDR3s were shared by the two computational tools. Yet, patterns of TCR associations with patients' clinical and molecular characteristics based on data obtained from either tool were similar. The numbers of unique TCR clones were highly correlated with patients' white blood cell counts, bone marrow blast percentage, and peripheral blood blast percentage. Multivariable regressions of TCRA and TCRB median normalized number of unique clones with mutational status of AML patients using TRUST4 showed significant association of TCRA or TCRB with WT1 mutations, WBC count, %BM blast, and sex (adjusted in TCRB model). We observed a correlation between TCRA/B number of unique clones and the expression of T cells inhibitory signal genes (TIGIT, LAG3, CTLA-4) and foxp3, but not IL2RA, CD69 and TNFRSF9 suggestive of exhausted T cell phenotypes in AML. Conclusion: Benchmarking of computational tools is needed to increase the accuracy of the identified clones. The utilization of RNA-seq data enables identification of highly abundant TCRs and correlating these clones with patients' clinical and molecular characteristics. This study further supports the value of high-resolution TCR-Seq analyses to characterize the TCR repertoire in patients.


Assuntos
Transplante de Células-Tronco Hematopoéticas , Leucemia Mieloide Aguda , Adulto , Humanos , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/terapia , Linfócitos T , Receptores de Antígenos de Linfócitos T/genética , Medula Óssea
4.
Clin Transl Sci ; 16(10): 1828-1841, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37670476

RESUMO

Glutamine and glutamate have been widely explored as potential therapeutic targets in acute myeloid leukemia (AML). In addition to its bioenergetic role in leukemia cell proliferation, L-glutamate is a neurotransmitter that acts on glutamate receptors. However, the role of glutamate receptors in AML is largely understudied. Here, we comprehensively analyze the genomic and transcriptomic alterations of glutamate receptor genes in AML using publicly available data. We investigated the frequency of mutations in the glutamate receptor genes and whether an association exist between the presence of these mutations and clinical and molecular characteristics or patient's clinical outcome. We also assessed the dysregulation of glutamate receptor gene expression in AML with and without mutations and whether gene dysregulation is associated with clinical outcomes. We found that 29 (14.5%) of 200 patients with AML had a mutation in at least one glutamate receptor gene. The DNMT3A mutations were significantly more frequent in patients with mutations in at least one glutamate receptor gene compared with patients without mutations (13 of 29 [44.8%] vs. 41 of 171 [23.9%], p value: 0.02). Notably, patients with mutations in at least one glutamate receptor gene survived shorter than patients without mutations; however, the results did not reach statistical significance (overall survival: 15.5 vs. 19.0 months; p value: 0.10). Mutations in the glutamate receptor genes were not associated with changes in gene expression and the transcriptomic levels of glutamate receptor genes were not associated with clinical outcome.


Assuntos
DNA (Citosina-5-)-Metiltransferases , Leucemia Mieloide Aguda , Humanos , DNA (Citosina-5-)-Metiltransferases/genética , DNA Metiltransferase 3A , Transcriptoma , Mutação , Leucemia Mieloide Aguda/genética , Genômica , Receptores de Glutamato/genética , Prognóstico
5.
Expert Opin Drug Metab Toxicol ; 19(6): 357-366, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37410014

RESUMO

INTRODUCTION: Asparaginase is essential to chemotherapy regimens for acute lymphoblastic leukemia (ALL). Survival of patients with ALL has improved since incorporating asparaginase into chemotherapy backbones. Hispanic patients have a higher incidence of ALL than other ethnicities and suffer inferior outcomes. The inferior outcome of Hispanics is due to several factors, including the increased incidence of high-risk genetic subtypes and susceptibility to treatment-related toxicity. AREAS COVERED: We summarize the current knowledge of asparaginase-related toxicity by comparing their incidence between Hispanic and non-Hispanic patients. These toxicities include hypersensitivity, hepatotoxicity, pancreatitis, thrombosis, and hypertriglyceridemia. The PubMed database and Google Scholar were used to search for this review from October 2022 to June 2023. EXPERT OPINION: Except for hepatotoxicity and hypertriglyceridemia secondary to asparaginase-based treatments, which may develop more frequently among Hispanic patients with ALL, other toxicities were comparable between Hispanic and non-Hispanic patients. Nevertheless, studies with larger cohorts and more accurate capturing of Hispanic ethnicity should be conducted to fill the gaps in the current knowledge.


Assuntos
Antineoplásicos , Doença Hepática Induzida por Substâncias e Drogas , Hipertrigliceridemia , Leucemia-Linfoma Linfoblástico de Células Precursoras , Humanos , Criança , Adulto , Asparaginase/efeitos adversos , Antineoplásicos/efeitos adversos , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamento farmacológico , Hipertrigliceridemia/tratamento farmacológico , Doença Hepática Induzida por Substâncias e Drogas/tratamento farmacológico
6.
Brief Bioinform ; 24(4)2023 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-37291798

RESUMO

The ability to identify and track T-cell receptor (TCR) sequences from patient samples is becoming central to the field of cancer research and immunotherapy. Tracking genetically engineered T cells expressing TCRs that target specific tumor antigens is important to determine the persistence of these cells and quantify tumor responses. The available high-throughput method to profile TCR repertoires is generally referred to as TCR sequencing (TCR-Seq). However, the available TCR-Seq data are limited compared with RNA sequencing (RNA-Seq). In this paper, we have benchmarked the ability of RNA-Seq-based methods to profile TCR repertoires by examining 19 bulk RNA-Seq samples across 4 cancer cohorts including both T-cell-rich and T-cell-poor tissue types. We have performed a comprehensive evaluation of the existing RNA-Seq-based repertoire profiling methods using targeted TCR-Seq as the gold standard. We also highlighted scenarios under which the RNA-Seq approach is suitable and can provide comparable accuracy to the TCR-Seq approach. Our results show that RNA-Seq-based methods are able to effectively capture the clonotypes and estimate the diversity of TCR repertoires, as well as provide relative frequencies of clonotypes in T-cell-rich tissues and low-diversity repertoires. However, RNA-Seq-based TCR profiling methods have limited power in T-cell-poor tissues, especially in highly diverse repertoires of T-cell-poor tissues. The results of our benchmarking provide an additional appealing argument to incorporate RNA-Seq into the immune repertoire screening of cancer patients as it offers broader knowledge into the transcriptomic changes that exceed the limited information provided by TCR-Seq.


Assuntos
Benchmarking , Neoplasias , Humanos , Receptores de Antígenos de Linfócitos T/genética , Linfócitos T , Neoplasias/genética , Análise de Sequência de RNA
7.
Methods Mol Biol ; 2673: 273-287, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37258921

RESUMO

Formation of major histocompatibility (MHC)-peptide-T cell receptor (TCR) complexes is central to initiation of an adaptive immune response. These complexes form through initial stabilization of the MHC fold via binding of a short peptide, and subsequent interaction of the TCR to form a ternary complex, with contacts made predominantly through the complementarity-determining region (CDR) loops of the TCR. Stimulation of an immune response is central to cancer immunotherapy. This approach depends on identification of the appropriate combinations of MHC molecules, peptides, and TCRs to elicit an antitumor immune response. This prediction is a current challenge in computational biochemistry. In this chapter, we introduce a predictive method that involves generation of multiple peptides and TCR CDR 3 loop conformations, solvation of these conformers in the context of the MHC-peptide-TCR ternary complex, extraction of parameters from the generated complexes, and use of an AI model to evaluate the potential for the assembled ternary complex to support an immune response.


Assuntos
Peptídeos , Receptores de Antígenos de Linfócitos T , Receptores de Antígenos de Linfócitos T/metabolismo , Peptídeos/química , Regiões Determinantes de Complementaridade , Antígenos de Histocompatibilidade/química , Modelos Moleculares
8.
Cell Mol Biol Lett ; 28(1): 45, 2023 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-37226083

RESUMO

BACKGROUND: CD36 has been identified as a potential therapeutic target both in leukemic cells and in the tumor immune microenvironment. In acute myeloid leukemia (AML), we found that APOC2 acts with CD36 to promote leukemia growth by activating the LYN-ERK signaling. CD36 also plays a role in lipid metabolism of cancer associated T-cells leading to impaired cytotoxic CD8+ T-cell and enhanced Treg cell function. To establish CD36 as a viable therapeutic target in AML, we investigated whether targeting CD36 has any detrimental impact on normal hematopoietic cells. METHODS: Differential expression data of CD36 during human and mouse normal hematopoiesis were examined and compared. Cd36 knockout (Cd36-KO) mice were evaluated for blood analysis, hematopoietic stem cells and progenitors (HSPCs) function and phenotype analyses, and T cells in vitro expansion and phenotypes in comparison with wild type (WT) mice. In addition, MLL-PTD/FLT3-ITD leukemic cells were engrafted into Cd36-KO and WT mice, and leukemia burden was compared between groups. RESULTS: RNA-Seq data showed that Cd36 expression was low in HSPCs and increased as cells matured. Phenotypic analysis revealed limited changes in blood count except for a slight yet significantly lower red blood cell count and hemoglobin and hematocrit levels in Cd36-KO mice compared with WT mice (P < 0.05). In vitro cell proliferation assays of splenocytes and HSPCs from Cd36-KO mice showed a similar pattern of expansion to that of cells from WT mice. Characterization of HSPCs showed similar percentages of the different progenitor cell populations between Cd36-KO with WT mice. However, Cd36-KO mice exhibited ~ 40% reduction of the number of colonies developed from HSPCs cells compared with WT mice (P < 0.001). Cd36-KO and WT mice presented comparably healthy BM transplant in non-competitive models and developed similar leukemia burden. CONCLUSIONS: Although the loss of Cd36 affects the hematopoietic stem cell and erythropoiesis, limited detrimental overall impact was observed on normal Hematopoietic and leukemic microenvironments. Altogether, considering the limited impact on normal hematopoiesis, therapeutic approaches to target CD36 in cancer are unlikely to result in toxicity to normal blood cells.


Assuntos
Leucemia , Humanos , Animais , Camundongos , Leucemia/genética , Células-Tronco Hematopoéticas , Linfócitos T CD8-Positivos , Ciclo Celular , Hematopoese , Microambiente Tumoral
10.
Front Immunol ; 13: 954078, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36451811

RESUMO

T cell receptor (TCR) studies have grown substantially with the advancement in the sequencing techniques of T cell receptor repertoire sequencing (TCR-Seq). The analysis of the TCR-Seq data requires computational skills to run the computational analysis of TCR repertoire tools. However biomedical researchers with limited computational backgrounds face numerous obstacles to properly and efficiently utilizing bioinformatics tools for analyzing TCR-Seq data. Here we report pyTCR, a computational notebook-based solution for comprehensive and scalable TCR-Seq data analysis. Computational notebooks, which combine code, calculations, and visualization, are able to provide users with a high level of flexibility and transparency for the analysis. Additionally, computational notebooks are demonstrated to be user-friendly and suitable for researchers with limited computational skills. Our tool has a rich set of functionalities including various TCR metrics, statistical analysis, and customizable visualizations. The application of pyTCR on large and diverse TCR-Seq datasets will enable the effective analysis of large-scale TCR-Seq data with flexibility, and eventually facilitate new discoveries.


Assuntos
Análise de Dados , Receptores de Antígenos de Linfócitos T , Reprodutibilidade dos Testes , Receptores de Antígenos de Linfócitos T/genética , Benchmarking , Biologia Computacional
11.
Biomed Pharmacother ; 150: 113000, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35658244

RESUMO

Asparaginase is an integral component of acute lymphoblastic leukemia (ALL)3 treatment. Hepatotoxicity related to asparaginase is one of the most common treatment-related toxicities in ALL therapy. Hispanic children are at higher risk of developing ALL, and toxicities from ALL therapy. The rs4880 variant in the superoxide dismutase 2 (SOD2)4 gene, a critical mitochondrial enzyme that protects cells against oxidative stress, was found to be associated with increased incidence of asparaginase-related hepatotoxicity in adult cohort of largely White non-Hispanics patients with ALL. The risk genotype (rs4880-CC) is more frequent among adult Hispanic patients with ALL. To assess the prevalence of hepatotoxicity and risk genotype among pediatric patients with ALL, particularly of Hispanic ethnicity, we conducted a prospective study of 143 pediatric patients with ALL (62.2% Hispanic). Bilirubin and hepatic transaminase levels were collected at different times during multiagent therapy including asparaginase treatment. Germline DNA blood samples were genotyped for the SOD2 rs4880. We found that the frequency of hepatotoxicity and the rs4880-CC risk genotype are higher in Hispanic patients than non-Hispanic. Patients with the CC genotype exhibit higher bilirubin and hepatic transaminase levels compared with patients with the TT and CT genotypes. In a multivariate Cox analysis, Hispanic ethnicity was identified as a strong predictor of hepatotoxicity (hazard ratio [HR] = 1.9, 95% confidence interval [95% CI] 1.0-3.5, p = 0.05). Altogether, these findings demonstrate that hepatotoxicity is highly prevalent among Hispanic pediatric patients with ALL, and those with rs4880-CC genotype.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Hepatopatias , Leucemia-Linfoma Linfoblástico de Células Precursoras , Adulto , Asparaginase/efeitos adversos , Bilirrubina/uso terapêutico , Doença Hepática Induzida por Substâncias e Drogas/etiologia , Doença Hepática Induzida por Substâncias e Drogas/genética , Criança , Etnicidade , Genótipo , Humanos , Polimorfismo de Nucleotídeo Único , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamento farmacológico , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Estudos Prospectivos , Superóxido Dismutase/genética , Superóxido Dismutase/uso terapêutico , Transaminases
15.
J Clin Immunol ; 41(6): 1131-1145, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33950324

RESUMO

The coronavirus disease 2019 (COVID-19) pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has become a public health emergency. The most common symptoms of COVID-19 are fever, cough, and fatigue. While most patients with COVID-19 present with mild illness, some patients develop pneumonia, an important risk factor for mortality, at early stage of viral infection, putting these patients at increased risk of death. So far, little has been known about differences in the T cell repertoires between COVID-19 patients with and without pneumonia during SARS-CoV-2 infection. Herein, we aimed to investigate T cell receptor (TCR) repertoire profiles and patient-specific SARS-CoV-2-associated TCR clusters between COVID-19 patients with mild disease (no sign of pneumonia) and pneumonia. The TCR sequencing was conducted to characterize the peripheral TCR repertoire profile and diversity. The TCR clustering and CDR3 annotation were exploited to further discover groups of patient-specific TCR clonotypes with potential SARS-CoV-2 antigen specificities. Our study indicated a slight decrease in the TCR repertoire diversity and a skewed CDR3 length usage in patients with pneumonia compared to those with mild disease. The SARS-CoV-2-associated TCR clusters enriched in patients with mild disease exhibited significantly higher TCR generation probabilities and most of which were highly shared among patients, compared with those from pneumonia patients. Importantly, using similarity network-based clustering followed by the sequence conservation analysis, we found different patterns of CDR3 sequence motifs between mild disease- and pneumonia-specific SARS-CoV-2-associated public TCR clusters. Our results showed that characteristics of overall TCR repertoire and SARS-CoV-2-associated TCR clusters/clonotypes were divergent between COVID-19 patients with mild disease and patients with pneumonia. These findings provide important insights into the correlation between the TCR repertoire and disease severity in COVID-19 patients.


Assuntos
COVID-19/imunologia , Pneumonia/imunologia , Receptores de Antígenos de Linfócitos T/genética , SARS-CoV-2/fisiologia , Linfócitos T/imunologia , Adulto , Idoso , Progressão da Doença , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Pandemias , Receptores de Antígenos de Linfócitos T/metabolismo , Análise de Sequência de DNA , Índice de Gravidade de Doença
17.
Pharmacol Ther ; 225: 107844, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33811956

RESUMO

Acute myeloid leukemia (AML) is a hematological malignancy characterized by clonal expansion and differentiation arrest of the myeloid progenitor cells, which leads to the accumulation of immature cells called blasts in the bone marrow and peripheral blood. Mutations in the receptor tyrosine kinase FLT3 occur in 30% of normal karyotype patients with AML and are associated with a higher incidence of relapse and worse survival. Targeted therapies against FLT3 mutations using small-molecule FLT3 tyrosine kinase inhibitors (TKIs) have long been investigated, with some showing favorable clinical outcomes. However, major setbacks such as limited clinical efficacy and the high risk of acquired resistance remain unresolved. FLT3 signaling, mutations, and FLT3 inhibitors are topics that have been extensively reviewed in recent years. Strategies to target FLT3 beyond the small molecule kinase inhibitors are expanding, nevertheless they are not receiving enough attention. These modalities include antibody-based FLT3 targeted therapies, immune cells mediated targeting strategies, and approaches targeting downstream signaling pathways and FLT3 translation. Here, we review the most recent advances and the challenges associated with the development of therapeutic modalities targeting FLT3 beyond the kinase inhibitors.


Assuntos
Tirosina Quinase 3 Semelhante a fms , Humanos , Leucemia Mieloide Aguda/tratamento farmacológico , Mutação/efeitos dos fármacos , Inibidores de Proteínas Quinases/farmacologia , Receptores Proteína Tirosina Quinases/genética , Tirosina Quinase 3 Semelhante a fms/efeitos dos fármacos , Tirosina Quinase 3 Semelhante a fms/genética
18.
Blood Cancer J ; 11(3): 48, 2021 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-33658483

RESUMO

Internal tandem duplication (-ITD) mutations of Fms-like tyrosine kinase 3 (FLT3) provide growth and pro-survival signals in the context of established driver mutations in FLT3 mutant acute myeloid leukemia (AML). Maternal embryonic leucine zipper kinase (MELK) is an aberrantly expressed gene identified as a target in AML. The MELK inhibitor OTS167 induces cell death in AML including cells with FLT3 mutations, yet the role of MELK and mechanisms of OTS167 function are not understood. OTS167 alone or in combination with tyrosine kinase inhibitors (TKIs) were used to investigate the effect of OTS167 on FLT3 signaling and expression in human FLT3 mutant AML cell lines and primary cells. We describe a mechanism whereby OTS167 blocks FLT3 expression by blocking FLT3 translation and inhibiting phosphorylation of eukaryotic initiation factor 4E-binding protein 1 (4E-BP1) and eukaryotic translation initiation factor 4B (eIF4B). OTS167 in combination with TKIs results in synergistic induction of FLT3 mutant cell death in FLT3 mutant cell lines and prolonged survival in a FLT3 mutant AML xenograft mouse model. Our findings suggest signaling through MELK is necessary for the translation and expression of FLT3-ITD, and blocking MELK with OTS167 represents a viable therapeutic strategy for patients with FLT3 mutant AML.


Assuntos
Leucemia Mieloide Aguda/tratamento farmacológico , Naftiridinas/uso terapêutico , Inibidores de Proteínas Quinases/uso terapêutico , Tirosina Quinase 3 Semelhante a fms/genética , Animais , Linhagem Celular Tumoral , Sinergismo Farmacológico , Humanos , Leucemia Mieloide Aguda/genética , Camundongos , Mutação/efeitos dos fármacos , Naftiridinas/farmacologia , Biossíntese de Proteínas/efeitos dos fármacos , Inibidores de Proteínas Quinases/farmacologia , Tirosina Quinase 3 Semelhante a fms/antagonistas & inibidores
19.
Blood Cancer Discov ; 1(2): 198-213, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32944714

RESUMO

Acute myeloid leukemia (AML) is a devastating hematologic malignancy that affects the hematopoietic stem cells. The 5-year overall survival (OS) of patients with AML is less than 30%, highlighting the urgent need to identify new therapeutic targets. Here, we analyze gene expression datasets for genes that are differentially overexpressed in AML cells compared with healthy hematopoietic cells. We report that apolipoprotein C2 (APOC2) mRNA is significantly overexpressed in AML, particularly in patients with mixed-lineage leukemia rearrangements. By multivariate analysis, high APOC2 expression in leukemia blasts is significantly associated with decreased OS (HR: 2.51; 95% CI, 1.03-6.07; P = 0.04). APOC2 is a small secreted apolipoprotein that constitutes chylomicrons, very-low-density lipoproteins, and high-density lipoproteins with other apolipoproteins. APOC2 activates lipoprotein lipase and contributes to lipid metabolism. By gain and loss of function approaches in cultured AML cells, we demonstrate that APOC2 promotes leukemia growth via CD36-mediated LYN-ERK signaling activation. Knockdown or pharmacological inhibition of either APOC2 or CD36 reduces cell proliferation, induces apoptosis in vitro, and delays leukemia progression in mice. Altogether, this study establishes APOC2-CD36 axis as a potential therapeutic target in AML.


Assuntos
Apolipoproteína C-II , Antígenos CD36 , Leucemia Mieloide Aguda , Animais , Apolipoproteína C-II/genética , Apolipoproteína C-II/metabolismo , Apoptose/genética , Antígenos CD36/genética , Antígenos CD36/metabolismo , Proliferação de Células/genética , Células-Tronco Hematopoéticas , Humanos , Leucemia Mieloide Aguda/genética , Camundongos
20.
Trends Pharmacol Sci ; 41(8): 518-530, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32576386

RESUMO

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has infected several millions and killed more than quarter of a million worldwide to date. Important questions have remained unanswered: why some patients develop severe disease, while others do not; and what roles do genetic variabilities play in the individual immune response to this viral infection. Here, we discuss the critical role T cells play in the orchestration of the antiviral response underlying the pathogenesis of the disease, COVID-19. We highlight the scientific rationale for comprehensive and longitudinal TCR analyses in COVID-19 and reason that analyzing TCR repertoire in COVID-19 patients would reveal important findings that may explain the outcome disparity observed in these patients. Finally, we provide a framework describing the different strategies, the advantages, and the challenges involved in obtaining useful TCR repertoire data to advance our fight against COVID-19.


Assuntos
Betacoronavirus/isolamento & purificação , Infecções por Coronavirus/epidemiologia , Pneumonia Viral/epidemiologia , Receptores de Antígenos de Linfócitos T/imunologia , Animais , COVID-19 , Infecções por Coronavirus/genética , Infecções por Coronavirus/imunologia , Humanos , Pandemias , Pneumonia Viral/genética , Pneumonia Viral/imunologia , SARS-CoV-2 , Linfócitos T/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...