Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Cell Biol ; 44(2): 43-56, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38347726

RESUMO

Transcription factors play key roles in development and disease by controlling gene expression. Forkhead box A1 (FOXA1), is a pioneer transcription factor essential for mouse development and functions as an oncogene in prostate and breast cancer. In colorectal cancer (CRC), FOXA1 is significantly downregulated and high FOXA1 expression is associated with better prognosis, suggesting potential tumor suppressive functions. We therefore investigated the regulation of FOXA1 expression in CRC, focusing on well-differentiated CRC cells, where FOXA1 is robustly expressed. Genome-wide RNA stability assays identified FOXA1 as an unstable mRNA in CRC cells. We validated FOXA1 mRNA instability in multiple CRC cell lines and in patient-derived CRC organoids, and found that the FOXA1 3'UTR confers instability to the FOXA1 transcript. RNA pulldowns and mass spectrometry identified Staufen1 (STAU1) as a potential regulator of FOXA1 mRNA. Indeed, STAU1 knockdown resulted in increased FOXA1 mRNA and protein expression due to increased FOXA1 mRNA stability. Consistent with these data, RNA-seq following STAU1 knockdown in CRC cells revealed that FOXA1 targets were upregulated upon STAU1 knockdown. Collectively, this study uncovers a molecular mechanism by which FOXA1 is regulated in CRC cells and provides insights into our understanding of the complex mechanisms of gene regulation in cancer.


Assuntos
Neoplasias Colorretais , Transcriptoma , Masculino , Humanos , Animais , Camundongos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Fatores de Transcrição/metabolismo , Regulação da Expressão Gênica , Neoplasias Colorretais/metabolismo , Fator 3-alfa Nuclear de Hepatócito/genética , Fator 3-alfa Nuclear de Hepatócito/metabolismo , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Proteínas do Citoesqueleto/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo
2.
Neuro Oncol ; 26(6): 1083-1096, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38134889

RESUMO

BACKGROUND: The cell cycle is tightly regulated by checkpoints, which play a vital role in controlling its progression and timing. Cancer cells exploit the G2/M checkpoint, which serves as a resistance mechanism against genotoxic anticancer treatments, allowing for DNA repair prior to cell division. Manipulating cell cycle timing has emerged as a potential strategy to augment the effectiveness of DNA damage-based therapies. METHODS: In this study, we conducted a forward genome-wide CRISPR/Cas9 screening with repeated exposure to the alkylating agent temozolomide (TMZ) to investigate the mechanisms underlying tumor cell survival under genotoxic stress. RESULTS: Our findings revealed that canonical DNA repair pathways, including the Ataxia-telangiectasia mutated (ATM)/Fanconi and mismatch repair, determine cell fate under genotoxic stress. Notably, we identified the critical role of PKMYT1, in ensuring cell survival. Depletion of PKMYT1 led to overwhelming TMZ-induced cytotoxicity in cancer cells. Isobologram analysis demonstrated potent drug synergy between alkylating agents and a Myt1 kinase inhibitor, RP-6306. Mechanistically, inhibiting Myt1 forced G2/M-arrested cells into an unscheduled transition to the mitotic phase without complete resolution of DNA damage. This forced entry into mitosis, along with persistent DNA damage, resulted in severe mitotic abnormalities. Ultimately, these aberrations led to mitotic exit with substantial apoptosis. Preclinical animal studies demonstrated that the combination regimen involving TMZ and RP-6306 prolonged the overall survival of glioma-bearing mice. CONCLUSIONS: Collectively, our findings highlight the potential of targeting cell cycle timing through Myt1 inhibition as an effective strategy to enhance the efficacy of current standard cancer therapies, potentially leading to improved disease outcomes.


Assuntos
Antineoplásicos Alquilantes , Dano ao DNA , Pontos de Checagem da Fase G2 do Ciclo Celular , Temozolomida , Ensaios Antitumorais Modelo de Xenoenxerto , Humanos , Animais , Temozolomida/farmacologia , Pontos de Checagem da Fase G2 do Ciclo Celular/efeitos dos fármacos , Camundongos , Antineoplásicos Alquilantes/farmacologia , Antineoplásicos Alquilantes/uso terapêutico , Dano ao DNA/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sistemas CRISPR-Cas , Camundongos Nus , Linhagem Celular Tumoral , Células Tumorais Cultivadas , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/patologia , Reparo do DNA/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA