Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
iScience ; 26(11): 108152, 2023 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-37920668

RESUMO

MicroRNAs (miRNAs) modulate mRNA expression, and their deregulation contributes to various diseases including amyotrophic lateral sclerosis (ALS). As fused in sarcoma (FUS) is a causal gene for ALS and regulates biogenesis of miRNAs, we systematically analyzed the miRNA repertoires in spinal cords and hippocampi from ALS-FUS mice to understand how FUS-dependent miRNA deregulation contributes to ALS. miRNA profiling identified differentially expressed miRNAs between different central nervous system (CNS) regions as well as disease states. Among the up-regulated miRNAs, miR-1197 targets the pro-survival pseudokinase Trib2. A reduced TRIB2 expression was observed in iPSC-derived motor neurons from ALS patients. Pharmacological stabilization of TRIB2 protein with a clinically approved cancer drug rescues the survival of iPSC-derived human motor neurons, including those from a sporadic ALS patient. Collectively, our data indicate that miRNA profiling can be used to probe the molecular mechanisms underlying selective vulnerability, and TRIB2 is a potential therapeutic target for ALS.

2.
Neurobiol Learn Mem ; 138: 54-61, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27544849

RESUMO

STIM2 is an integral membrane protein of the endoplasmic reticulum (ER) that regulates the activity of plasma membrane (PM) channels at ER-PM contact sites. Recent studies show that STIM2 promotes spine maturation and surface expression of the AMPA receptor (AMPAR) subunit GluA1, hinting at a probable role in synaptic plasticity. Here, we used a Stim2 cKO mouse to explore the function of STIM2 in Long-Term Potentiation (LTP) and Depression (LTD), two widely-studied models of synaptic plasticity implicated in information storage. We found that STIM2 is required for the stable expression of both LTP and LTD at CA3-CA1 hippocampal synapses. Altered plasticity in Stim2 cKO mice is associated with subtle alterations in the shape and density of dendritic spines in CA1 neurons. Further, surface delivery of GluA1 in response to LTP-inducing chemical manipulations was markedly reduced in excitatory neurons derived from Stim2 cKO mice. GluA1 endocytosis following chemically-induced LTD was also impaired in Stim2 cKO neurons. We conclude that STIM2 facilitates synaptic delivery and removal of AMPARs and regulates activity-dependent changes in synaptic strength through a unique mode of communication between the ER and the synapse.


Assuntos
Hipocampo/metabolismo , Plasticidade Neuronal/fisiologia , Transporte Proteico/fisiologia , Receptores de AMPA/metabolismo , Molécula 2 de Interação Estromal/metabolismo , Sinapses/metabolismo , Animais , Forma Celular/fisiologia , Espinhas Dendríticas/genética , Espinhas Dendríticas/metabolismo , Retículo Endoplasmático/metabolismo , Masculino , Camundongos , Camundongos Knockout , Neurônios/citologia , Neurônios/metabolismo , Molécula 2 de Interação Estromal/genética , Sinapses/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...