Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Geospat Health ; 18(2)2023 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-37847241

RESUMO

This study discusses the ethical use of geographical information systems (GIS) data with a focus on geomasking for upholding locational privacy. As part of a pilot study in Jeddah City, Saudi Arabia, we used open-source geomasking methods to ensure geoprivacy while examining built environment features that determine the quality of life among individuals with type-II diabetes. We employed the open-source algorithms Maskmy.XYZ and NRand-k for geomasking 329 data points. The results showed no differences between global and city-level spatial patterns, but significant variations were observed with respect to local patterns. These findings indicate the promising potential of the chosen geomasking technologies with respect to ensuring locational privacy but it was noted that further improvements are needed. We recommend developing enhanced algorithms and conducting additional studies to minimize any negative impact of geomasking in spatial analysis with the overall aim of achieving a better understanding of ethical considerations in GIS sciences. In conclusion, application of geomasking is straightforward and can lead to enhanced use for privacy protection in geospatial data analysis.


Assuntos
Sistemas de Informação Geográfica , Qualidade de Vida , Humanos , Projetos Piloto , Análise Espacial , Privacidade
2.
Artigo em Inglês | MEDLINE | ID: mdl-33808481

RESUMO

The coronavirus (COVID-19) pandemic has brought immense challenges to the natural and built environment to develop an antivirus-enabled model for reducing potential risks of spreading the virus at varied scales such as buildings, neighborhoods, and cities. Spatial configurations of structures may hinder or assist the spread of viruses in the built environment. In this study, we have hypothesized that suitable air ventilation in historic buildings may enhance the built environment to combat the spreading of infectious viruses. To provide such quantitative shreds of evidence, we have generated and estimated an integrated model to summarize obtained information by considering natural ventilation, wind speed, inflow and outflow, wind direction, and forecasting the associated risks of airborne disease transmission in a historical building (i.e., the Hazzazi House in particular). Intrinsically, the results have demonstrated that the effectiveness of natural ventilation has directly influenced reducing the risks of transmitting airborne infectious viruses for the selected heritage building in Jeddah (Saudi Arabia). The adopted methods in this research may be useful to understand the potentials of conserving old heritage buildings. Consequently, the results demonstrate that natural air ventilation systems are critical to combat the spread of infectious diseases in the pandemic.


Assuntos
COVID-19 , Vírus , Cidades , Humanos , Saúde Pública , SARS-CoV-2 , Arábia Saudita
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...