Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 16(8): e0256226, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34437568

RESUMO

Coronavirus disease (COVID)-19, as a result of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) infection, has been the direct cause of over 2.2 million deaths worldwide. A timely coordinated host-immune response represents the leading driver for restraining SARS-CoV-2 infection. Indeed, several studies have described dysregulated immunity as the crucial determinant for critical illness and the failure of viral control. Improved understanding and management of COVID-19 could greatly reduce the mortality and morbidity caused by SARS-CoV-2. One aspect of the immune response that has to date been understudied is whether lipid mediator production is dysregulated in critically ill patients. In the present study, plasma from COVID-19 patients with either severe disease and those that were critically ill was collected and lipid mediator profiles were determined using liquid chromatography tandem mass spectrometry. Results from these studies indicated that plasma concentrations of both pro-inflammatory and pro-resolving lipid mediator were reduced in critically ill patients when compared with those with severe disease. Furthermore, plasma concentrations of a select group of mediators that included the specialized pro-resolving mediators (SPM) Resolvin (Rv) D1 and RvE4 were diagnostic of disease severity. Interestingly, peripheral blood SPM concentrations were also linked with outcome in critically ill patients, where we observed reduced overall concentrations of these mediators in those patients that did not survive. Together the present findings establish a link between plasma lipid mediators and disease severity in patients with COVID-19 and indicate that plasma SPM concentrations may be linked with survival in these patients.


Assuntos
COVID-19/diagnóstico , Ácidos Docosa-Hexaenoicos/sangue , SARS-CoV-2/isolamento & purificação , Adulto , Idoso , COVID-19/virologia , Cromatografia Líquida de Alta Pressão , Estado Terminal , Feminino , Ferritinas/sangue , Produtos de Degradação da Fibrina e do Fibrinogênio/análise , Humanos , Masculino , Pessoa de Meia-Idade , Índice de Gravidade de Doença , Espectrometria de Massas em Tandem , Regulação para Cima
2.
Br J Haematol ; 192(4): 714-719, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33326604

RESUMO

Endothelial cell (EC) activation plays a key role in the pathogenesis of pulmonary microvascular occlusion, which is a hallmark of severe coronavirus disease 2019 (COVID-19). Consistent with EC activation, increased plasma von Willebrand factor antigen (VWF:Ag) levels have been reported in COVID-19. Importantly however, studies in other microangiopathies have shown that plasma VWF propeptide (VWFpp) is a more sensitive and specific measure of acute EC activation. In the present study, we further investigated the nature of EC activation in severe COVID-19. Markedly increased plasma VWF:Ag [median (interquatile range, IQR) 608·8 (531-830)iu/dl] and pro-coagulant factor VIII (FVIII) levels [median (IQR) 261·9 (170-315) iu/dl] were seen in patients with severe severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection. Sequential testing showed that these elevated VWF-FVIII complex levels remained high for up to 3 weeks. Similarly, plasma VWFpp levels were also markedly elevated [median (IQR) 324·6 (267-524) iu/dl]. Interestingly however, the VWFpp/VWF:Ag ratio was reduced, demonstrating that decreased VWF clearance contributes to the elevated plasma VWF:Ag levels in severe COVID-19. Importantly, plasma VWFpp levels also correlated with clinical severity indices including the Sequential Organ Failure Assessment (SOFA) score, Sepsis-Induced Coagulopathy (SIC) score and the ratio of arterial oxygen partial pressure to fractional inspired oxygen (P/F ratio). Collectively, these findings support the hypothesis that sustained fulminant EC activation is occurring in severe COVID-19, and further suggest that VWFpp may have a role as a biomarker in this setting.


Assuntos
COVID-19/sangue , Células Endoteliais/metabolismo , Precursores de Proteínas/sangue , SARS-CoV-2/metabolismo , Fator de von Willebrand/metabolismo , Adulto , Idoso , Biomarcadores/sangue , Células Endoteliais/patologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Índice de Gravidade de Doença
3.
Epilepsia ; 61(12): 2795-2810, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33070315

RESUMO

OBJECTIVE: Pharmacoresistance and the lack of disease-modifying actions of current antiseizure drugs persist as major challenges in the treatment of epilepsy. Experimental models of chemoconvulsant-induced status epilepticus remain the models of choice to discover potential antiepileptogenic drugs, but doubts remain as to the extent to which they model human pathophysiology. The aim of the present study was to compare the molecular landscape of the intra-amygdala kainic acid model of status epilepticus in mice with findings in resected brain tissue from patients with drug-resistant temporal lobe epilepsy (TLE). METHODS: Status epilepticus was induced via intra-amygdala microinjection of kainic acid in C57BL/6 mice, and gene expression was analyzed via microarrays in hippocampal tissue at acute and chronic time-points. Results were compared to reference datasets in the intraperitoneal pilocarpine and intrahippocampal kainic acid model and to human resected brain tissue (hippocampus and cortex) from patients with drug-resistant TLE. RESULTS: Intra-amygdala kainic acid injection in mice triggered extensive dysregulation of gene expression that was ~3-fold greater shortly after status epilepticus (2729 genes) when compared to epilepsy (412). Comparison to samples from patients with TLE revealed a particularly high correlation of gene dysregulation during established epilepsy. Pathway analysis found suppression of calcium signaling to be highly conserved across different models of epilepsy and patients. cAMP response element-binding protein (CREB) was predicted as one of the main upstream transcription factors regulating gene expression during acute and chronic phases, and inhibition of CREB reduced seizure severity in the intra-amygdala kainic acid model. SIGNIFICANCE: Our findings suggest the intra-amygdala kainic acid model faithfully replicates key molecular features of human drug-resistant TLE and provides potential rational target approaches for disease-modification through new insights into the unique and shared gene expression landscape in experimental epilepsy.


Assuntos
Tonsila do Cerebelo/efeitos dos fármacos , Modelos Animais de Doenças , Epilepsia Resistente a Medicamentos/metabolismo , Epilepsia do Lobo Temporal/metabolismo , Hipocampo/metabolismo , Ácido Caínico/farmacologia , Transcriptoma , Tonsila do Cerebelo/metabolismo , Animais , Eletroencefalografia , Expressão Gênica/efeitos dos fármacos , Humanos , Ácido Caínico/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Análise de Sequência com Séries de Oligonucleotídeos , Reação em Cadeia da Polimerase em Tempo Real , Estado Epiléptico/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...