Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Stem Cell Res ; 76: 103322, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38359472

RESUMO

Stem cells are a resourceful tool for investigating cardiovascular disease in the context of race and gender. Once derived from blood or skin cells, the reprogrammed induced pluripotent stem cells (iPSCs) adopt an embryonic-like pluripotent state, enabling researchers to develop drug screening or disease modeling platforms. Here, we generated two iPSC lines from peripheral blood mononuclear cells (PBMCs) of two healthy African American patients. Both lines display the usual morphology of pluripotent stem cells, demonstrate elevated expression of pluripotent markers, show normal karyotype, and differentiate into all three germ layers in vitro.


Assuntos
Linhagem Celular , Células-Tronco Pluripotentes Induzidas , Humanos , Negro ou Afro-Americano , Diferenciação Celular , Células-Tronco Pluripotentes Induzidas/citologia , Leucócitos Mononucleares
2.
Stem Cell Res ; 69: 103095, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37087898

RESUMO

Spinal muscular atrophy (SMA) is a severe neurodegenerative muscular disease caused by the homozygous loss of survival of motor neuron 1 (SMN1) genes. SMA patients exhibit marked skeletal muscle (SKM) loss, eventually leading to death. Here we generated two iPSC lines from two SMA type I patients with homozygous SMN1 mutations and validated the pluripotency and the ability to differentiate into three germ layers. The iPSC lines can be applied to generate skeletal muscles to model muscle atrophy of SMA that persists after treatment of motor neurons and will serve as a complementary platform for drug screening in vitro.


Assuntos
Células-Tronco Pluripotentes Induzidas , Atrofia Muscular Espinal , Humanos , Linhagem Celular , Homozigoto , Células-Tronco Pluripotentes Induzidas/metabolismo , Neurônios Motores/metabolismo , Atrofia Muscular Espinal/genética , Mutação , Proteína 1 de Sobrevivência do Neurônio Motor/genética , Proteína 1 de Sobrevivência do Neurônio Motor/metabolismo
3.
Stem Cell Res ; 65: 102941, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36270069

RESUMO

Dilated cardiomyopathy (DCM) is a common heart disease that can lead to heart failure and sudden cardiac death. Mutations in the TTN gene are the most frequent cause of DCM. Here, we generated two human induced pluripotent stem cell (iPSC) lines from the peripheral blood mononuclear cells (PBMCs) of two DCM patients carrying c.94816C>T and c.104188A>G mutations in TTN, respectively. The two lines exhibited a normal morphology, full expression of pluripotency markers, a normal karyotype and the ability of trilineage differentiation. The two lines can serve as useful tools for drug screening and mechanism studies on DCM.


Assuntos
Cardiomiopatia Dilatada , Células-Tronco Pluripotentes Induzidas , Humanos , Cardiomiopatia Dilatada/genética , Conectina/genética , Leucócitos Mononucleares , Linhagem Celular
4.
Circ Res ; 130(12): 1780-1802, 2022 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-35679369

RESUMO

An ensemble of in vitro cardiac tissue models has been developed over the past several decades to aid our understanding of complex cardiovascular disorders using a reductionist approach. These approaches often rely on recapitulating single or multiple clinically relevant end points in a dish indicative of the cardiac pathophysiology. The possibility to generate disease-relevant and patient-specific human induced pluripotent stem cells has further leveraged the utility of the cardiac models as screening tools at a large scale. To elucidate biological mechanisms in the cardiac models, it is critical to integrate physiological cues in form of biochemical, biophysical, and electromechanical stimuli to achieve desired tissue-like maturity for a robust phenotyping. Here, we review the latest advances in the directed stem cell differentiation approaches to derive a wide gamut of cardiovascular cell types, to allow customization in cardiac model systems, and to study diseased states in multiple cell types. We also highlight the recent progress in the development of several cardiovascular models, such as cardiac organoids, microtissues, engineered heart tissues, and microphysiological systems. We further expand our discussion on defining the context of use for the selection of currently available cardiac tissue models. Last, we discuss the limitations and challenges with the current state-of-the-art cardiac models and highlight future directions.


Assuntos
Células-Tronco Pluripotentes Induzidas , Células-Tronco Pluripotentes , Diferenciação Celular , Coração/fisiologia , Humanos , Modelos Cardiovasculares , Organoides
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA