Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Bio Mater ; 7(6): 4039-4050, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38830835

RESUMO

We investigated the possibility of loading PMMA bone cement with antimicrobial nanostructured AgNbO3 particles to counter biofilm formation at the cement-tissue interface. We found that a formulation containing (1-4)% AgNbO3 showed high antibacterial activity against Gram-positive Staphylococcus aureus and Gram-negative Pseudomonas aeruginosa while not showing any toxicity against THP1 human cell lines. In addition, loading the particles did not impact the mechanical properties of the cement. The results thus obtained illustrate the potential of the approach to replace the current technique of mixing cement with conventional antibiotics, which is associated with shortcomings such as efficacy loss from antibiotic depletion.


Assuntos
Antibacterianos , Cimentos Ósseos , Teste de Materiais , Testes de Sensibilidade Microbiana , Tamanho da Partícula , Polimetil Metacrilato , Pseudomonas aeruginosa , Staphylococcus aureus , Cimentos Ósseos/química , Cimentos Ósseos/farmacologia , Polimetil Metacrilato/química , Polimetil Metacrilato/farmacologia , Antibacterianos/farmacologia , Antibacterianos/química , Humanos , Staphylococcus aureus/efeitos dos fármacos , Pseudomonas aeruginosa/efeitos dos fármacos , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Biofilmes/efeitos dos fármacos , Nanopartículas/química
2.
J Biomed Mater Res B Appl Biomater ; 110(9): 2110-2120, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35420261

RESUMO

Transcatheter aortic valve replacement (TAVR) is an alternative technique to surgical valve replacement for over 300,000 patients worldwide. The valve material used in the TAVR is made of biological tissues, whose durability remains unknown. The success of the TAVR favors the research toward synthetic valve leaflet materials as an alternative to biological tissues. In particular, polyethylene terephthalate (PET) textile valves have recently proven durability over a 6-month period in animal sheep models. Excessive fibrotic tissue formation remains, however, a critical issue to be addressed. The aim of this work was therefore to investigate the potential of PET textiles covalently conjugated with polyethylene glycol (PEG), known for its antifouling properties, to modulate the fibrosis formation both in vitro and in vivo. For this purpose, the surfaces of heart valves made of PET textiles were functionalized with an atmospheric pressure plasma, leading to the formation of carboxylic acid (COOH) groups, further used for PEG-NH2 conjugation. Surface modification efficiency was assessed by X-ray photoelectron spectroscopy and water contact angle measurements. The biological behavior of the as-modified surfaces was evaluated by in vitro assays, using rat cardiac fibroblast cells. The results show that PEG treated substrates restrained the fibroblasts adhesion and proliferation. The PEG treated valve, implanted in a juvenile sheep model, showed a significant fibrosis reduction. The explant also revealed calcification issues that need to be addressed.


Assuntos
Próteses Valvulares Cardíacas , Substituição da Valva Aórtica Transcateter , Animais , Valva Aórtica/cirurgia , Fibrose , Polietilenoglicóis/farmacologia , Polietilenotereftalatos , Desenho de Prótese , Ratos , Ovinos , Têxteis
3.
Materials (Basel) ; 15(3)2022 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-35161206

RESUMO

Carbon products such as anodes and ramming paste must have well-defined physical, mechanical, chemical, and electrical properties to perform their functions effectively in the aluminum electrolysis cell. The physical and mechanical properties of these products are assigned during the shaping procedure in which compaction stresses are applied to the green carbon paste. The optimization of the shaping process is crucial to improving the properties of the carbon products and consequently to increasing the energy efficiency and decreasing the greenhouse gas emissions of the Hall-Héroult process. The objective of this study is to experimentally investigate the effect(s) of the strain rate, of the stress maximum amplitude, and of the unloading level on the behavior of a green carbon paste subjected to cyclic loading. To this end, experiments consisting of (1) cyclic compaction tests at different maximum stress amplitudes and strain rates, and (2) cyclic compaction tests with different unloading levels were carried out. The study obtained the following findings about the behavior of carbon paste subjected to cyclic loads. The strain rate in the studied range had no effect either on the evolution of the permanent strain as a function of the cycle number, nor on the shape of the stress-strain hysteresis during the cyclic loading. Moreover, samples of the same density that had been subjected to different maximum stress amplitudes in their loading history did not have the same shape of the stress-strain curve. On the other hand, despite having different densities, samples subjected to the same number of cycles produce the same stress-strain curve during loading even though they were subjected to different maximum stress amplitudes in their loading histories. Finally, the level of unloading during each cycle of a cyclic test proved significant; when the sample was unloaded to a lower level of stress during each cycle, the permanent strain as a function of the cycle number was higher.

4.
Materials (Basel) ; 14(19)2021 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-34639955

RESUMO

Carbon anodes participate in chemical reactions to reduce alumina in the Hall-Héroult process, of which coke aggregates make up a major part. The failure analysis of coke aggregates not only leads to a better understanding of the deformation mechanisms of anode paste under compressive loading but also can identify potential causes of structural defects in carbon anodes, such as horizontal cracks. The coke aggregates are composed of particles with different size distributions and shapes, which may strongly affect the failure behavior of the anode during compaction. In this paper, the effects of particle size distributions and shapes on the mechanical behavior and the failure of coke aggregates are investigated using the discrete element method modeling technique. The numerical results reveal that, although the mechanical behavior of coke mixtures is generally dependent on larger particles, the presence of fine particles in the coke aggregates reduces fluctuations in the stress-strain diagram. In addition, the rolling resistance model is employed as a parameter representing the effect of particle shape. It is shown that the rolling resistance model can be an alternative to the overlapped spheres model, which has a higher computational cost than the rolling resistance model. The second-order work criterion is used to evaluate the stability of the coke aggregates, the results of which indicate that the addition of fine particles as well as increasing the rolling resistance between the particles increases the stability range of the coke aggregates. Moreover, by using the analysis of micro-strain contour evaluations during the compaction process, it is shown that, both by adding fine particles to the coke mixture and by increasing the rolling resistance between the particles, the possibility of creating a compression band in the coke aggregates is reduced. Since the presence of the compaction bands in the anode paste creates an area prone to horizontal crack generations, the results of this study could lead to the production of carbon anodes with fewer structural defects.

5.
Materials (Basel) ; 14(15)2021 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-34361513

RESUMO

In the Hall-Héroult process, prebaked carbon anodes are utilized to produce primary aluminium. The quality of the anode plays a crucial role in the efficiency of electrowinning primary aluminium. In the production of anodes, the anode baking is considered as the stage most frequently causing anode problems. During the baking process, the anode undergoes complex physicochemical transformations. Moreover, the anode at a lower position, imposed by loading pressures from upper anodes, will creep during this process. Thus, the production of high-quality anodes demands efficient control of their baking process. This paper aims to investigate the thermo-chemo-mechanical properties of the anode paste mixture at high temperatures. These properties include kinetic parameters of pitch pyrolysis such as the activation energy and the pre-exponential factor, the thermal expansion coefficient (TEC) and relevant mechanical parameters related to the elastic, the viscoelastic and the viscoplastic behaviours of the anode. For this purpose, experiments consisting of the thermogravimetric analysis, the dilatometry and the creep test were carried out. Based on the obtained results, the forementioned parameters were identified. Relevant mechanical parameters were expressed as a function of a new variable, called the shrinking index, which is related to the volatile released in open and closed pores of the anode. This variable would be used to highlight the chemo-mechanical coupling effect of the anode mixture. New insights into the phenomena such as the expansion due to the increase of the pore pressure and the chemical shrinkage of the anode during the baking process were also gained in this work. These investigations pave the way for modeling the thermo-chemo-poromechanical behaviour of the anode during the baking process.

6.
ACS Appl Mater Interfaces ; 13(23): 27019-27028, 2021 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-34080830

RESUMO

Gas solubility can go beyond classical bulk-liquid Henry's law saturation under the nanoconfinement of a liquid phase. This concept establishes the foundation of the current study for developing a novel catalytic system for transformation of carbon dioxide to cyclic carbonates at mild conditions with major emphasis on application for CO2 capture and utilization. A series of mesoporous silica-based supports of various pore sizes and shapes grafted with a quaternary ammonium salt is synthesized and characterized. CO2 sorption in styrene oxide, either in bulk or nanoconfined state, as well as catalytic reactivity for CO2 transformation into styrene carbonate, are experimentally evaluated. The family of mesoporous catalysts with aligned cylindrical pores (MCM-41 and SBA-15) with pore sizes ranging from 3.5 to 9 nm exhibit enhanced sorption of CO2 in nanoconfined styrene oxide with maximum sorption capacity taking place in MCM-41 with the smallest pore size. The catalysts with interconnected cylindrical pores (KIT-6) with pore sizes ranging from 4.5 to 8.7 nm showed CO2 solubilities almost equal to the bulk solubility of styrene oxide. Monte Carlo simulations revealed that the oversolubility in styrene oxide confined complex is directly related to the density of adsorbed solvent in the nanopore, which is less than its bulk density. Catalytic reactivities correlate with CO2 sorption enhancement, showing higher turnover frequencies for catalysts having higher CO2 sorption capacity. The turnover frequency is increased by a factor of 7.5 for grafted MCM-41 with the smallest pore size with nanoconfined styrene oxide in comparison to the homogeneous reaction implemented in bulk.

7.
Materials (Basel) ; 14(9)2021 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-33922856

RESUMO

An in-depth study of the failure of granular materials, which is known as a mechanism to generate defects, can reveal the facts regarding the origin of the imperfections, such as cracks in the carbon anodes. The initiation and propagation of the cracks in the carbon anode, especially the horizontal cracks below the stub-holes, reduce the anode efficiency during the electrolysis process. The failure analysis of coke aggregates can be employed to determine the appropriate recipe and operating conditions in order to avoid the formation of cracks in the carbon anodes. In this paper, it will be shown that a particular failure mode can be responsible for the crack generation in the carbon anodes. The second-order work criterion is employed to analyze the failure of the coke aggregate specimens and the relationships between the second-order work, the kinetic energy, and the instability of the granular material are investigated. In addition, the coke aggregates are modeled by exploiting the discrete element method (DEM) to reveal the micro-mechanical behavior of the dry coke aggregates during the compaction process. The optimal number of particles required for the failure analysis in the DEM simulations is determined. The effects of the confining pressure and strain rate as two important compaction process parameters on the failure are studied. The results reveal that increasing the confining pressure enhances the probability of the diffusing mode of the failure in the specimen. On the other hand, the increase of strain rate augments the chance of the strain localization mode of the failure in the specimen.

8.
ACS Omega ; 6(12): 8002-8015, 2021 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-33817459

RESUMO

The present work focuses on the gasification of a single carbon-anode particle with CO2, using a detailed reaction-transport model based on the reaction intrinsic kinetics and transport of gaseous species. The model includes the mass conservation equations for the gas components and solid carbon particles, resulting in a set of nonlinear partial differential equations, being solved using numerical techniques. The model may predict the gas generation rate, the gas compositions, and the carbon consumption rate during the gasification of a carbon particle. Five kinetic models were compared to describe the gasification behavior of carbon particles. It was found that the random pore model (RPM) provided the best description of the reactivity of anode particles. The model also predicted the particle shrinkage during the gasification process. The model was validated using experimental results obtained with different particle size ranges, being gasified with CO2 at 1233 K. The experiments were performed in a thermogravimetric analyzer (TGA). Good agreement between the model results and the experimental data showed that this approach could quantify with success the gasification kinetics and the gas distribution within the anode particle. In addition, the Langmuir-Hinshelwood (L-H) model is used in order to capture the inhibition effect of carbon monoxide on the gasification reaction. The effectiveness factor and Thiele modulus simulated for various particle sizes helped assess the evolution of the relative dominance of diffusion and chemical reactions during the gasification process.

9.
Materials (Basel) ; 14(4)2021 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-33672082

RESUMO

The Hall-Héroult process uses prebaked carbon anodes as electrodes. The anode's quality plays a crucial role in the efficiency of the aluminium production process. During the baking process, the anode undergoes complex physicochemical transformations. Thus, the production of high-quality anodes depends, among others, on the efficient control of their baking process. This paper aims to investigate the evolution of some physical properties of the anode paste mixture during the baking process. These properties include the mass loss fraction, real and apparent densities, the ratio of apparent volume, the permeability, and porosities. For this purpose, experiments consisting of thermogravimetric analysis, dilatometry, air permeability, and helium-pycnometric measurements were carried out. The anode permeability at high temperatures was linked to the air permeability through a permeability correlator due to experimental limitations. Moreover, the real density at high temperatures was estimated by combining real densities of the coal tar pitch and coke aggregates. Different porosities, such as the open porosity and the closed porosity related to the pitch binder, were estimated by taking the permeability at high temperatures into account. In this context, the effect of the permeability correlator, which was introduced to link the permeability at high temperatures to the air permeability, was investigated through a sensitivity analysis. These results allow an estimation of the shrinking index, a new variable introduced to reflect the baking level of the anode mixture, which is linked to the volatile that is released in both open and closed pores. Afterwards, the pore pressure inside closed pores in the coal tar pitch was estimated. The obtained results highlight some new insights related to the baking process of the anode mixture. Moreover, they pave the way for better modeling of the thermo-chemo-mechanical behavior of anodes at high temperatures.

10.
Materials (Basel) ; 14(4)2021 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-33546121

RESUMO

Carbon-like materials such as the anode and the ramming paste play a crucial role in the efficiency of the Hall-Héroult process. The mechanical behavior of these materials during forming processes is complex and still ill-understood. This work aimed to investigate experimentally the mechanical behavior of a carbon paste used in the aluminum industry under different loading conditions. For this purpose, experiments consisting of (1) relaxation tests at different compaction levels, (2) quasi-static cyclic tests at several amplitudes, (3) monotonic compaction tests at varied strain rates, and (4) vibrocompaction tests at different frequencies were carried out. The obtained results highlight some fundamental aspects of the carbon paste behavior such as the strain rate's effect on the paste compressibility, the hardening-softening behavior under cyclic loadings, the effect of cycling amplitude on the stress state and the paste densification, and the frequency effect on the vibrocompaction process. These results pave the way for the development of reliable rheological models for the modeling and the numerical simulation of carbon pastes forming processes.

11.
Materials (Basel) ; 12(5)2019 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-30857156

RESUMO

The aim of this work is to model and characterize green anode paste compaction behavior. For this purpose, a nonlinear viscoplastic constitutive law for compressible materials, based on the finite strain theory and the thermodynamic framework, was used. An experimental study was carried out to characterize axial and radial behaviors of the anode paste. To this end, simple compaction tests using a thin steel instrumented mold were performed at a temperature of 150 °C. Results of these experiments brought out the nonlinear mechanical behavior of the anode paste. Furthermore, they showed the importance of its radial behavior. The constitutive law was implemented in Abaqus software through the user's material subroutine VUMAT for explicit dynamic analysis. An inverse analysis procedure for material parameters identification showed that the model predicts compaction tests results with a good agreement. In order to assess the constitutive law predictive potential in situations involving density gradients, compaction tests using complex geometries such as slots and stub holes were carried out. Finite element simulation results showed the ability of the model to successfully predict density profiles measured by the X-ray tomography.

12.
Ultrasonics ; 89: 126-136, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29783139

RESUMO

This paper reports on the application of an acousto-ultrasonic (AU) scheme for the inspection of industrial-size carbon anode blocks used in the production of primary aluminium by the Hall-Héroult process. A frequency-modulated wave is used to excite the anode blocks at multiple points. The collected attenuated AU signals are decomposed using the Discrete Wavelet Transform (DTW) after which vectors of features are calculated. Principal Component Analysis (PCA) is utilized to cluster the AU responses of the anodes. The approach allows locating cracks in the blocks and the AU features were found sensitive to crack severity. The results are validated using images collected after cutting some anodes.

13.
Materials (Basel) ; 9(5)2016 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-28773459

RESUMO

Rheological properties of pitch and pitch/coke mixtures at temperatures around 150 °C are of great interest for the carbon anode manufacturing process in the aluminum industry. In the present work, a cohesive viscoelastic contact model based on Burger's model is developed using the discrete element method (DEM) on the YADE, the open-source DEM software. A dynamic shear rheometer (DSR) is used to measure the viscoelastic properties of pitch at 150 °C. The experimental data obtained is then used to estimate the Burger's model parameters and calibrate the DEM model. The DSR tests were then simulated by a three-dimensional model. Very good agreement was observed between the experimental data and simulation results. Coke aggregates were modeled by overlapping spheres in the DEM model. Coke/pitch mixtures were numerically created by adding 5, 10, 20, and 30 percent of coke aggregates of the size range of 0.297-0.595 mm (-30 + 50 mesh) to pitch. Adding up to 30% of coke aggregates to pitch can increase its complex shear modulus at 60 Hz from 273 Pa to 1557 Pa. Results also showed that adding coke particles increases both storage and loss moduli, while it does not have a meaningful effect on the phase angle of pitch.

14.
Materials (Basel) ; 9(2)2016 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-28787917

RESUMO

This study reveals the effect of TiB2 particles on the mechanical and tribological properties of Fe3Al-TiB2 composite coatings against an alumina counterpart. The feedstock was produced by milling Fe3Al and TiB2 powders in a high energy ball mill. The high-velocity oxy-fuel (HVOF) technique was used to deposit the feedstock powder on a steel substrate. The effect of TiB2 addition on mechanical properties and dry sliding wear rates of the coatings at sliding speeds ranging from 0.04 to 0.8 m·s-1 and loads of 3, 5 and 7 N was studied. Coatings made from unreinforced Fe3Al exhibited a relatively high wear rate. The Vickers hardness, elastic modulus and wear resistance of the coatings increased with increasing TiB2 content in the Fe3Al matrix. The wear mechanisms strongly depended on the sliding speed and the presence of TiB2 particles but were less dependent on the applied load.

16.
Phys Chem Chem Phys ; 16(9): 4050-60, 2014 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-24448203

RESUMO

Microstructural properties of mixed oxides play essential roles in their oxygen mobility and consequently in their catalytic performances. Two families of mixed oxides (perovskite and hexaaluminate) with different microstructural features, such as crystal size and specific surface area, were prepared using the activated reactive synthesis (ARS) method. It was shown that ARS is a flexible route to synthesize both mixed oxides with nano-scale crystal size and high specific surface area. Redox properties and oxygen mobility were found to be strongly affected by the material microstructure. Catalytic activities of hexaaluminate and perovskite materials for methane oxidation were discussed in the light of structural, redox and oxygen mobility properties.


Assuntos
Óxido de Alumínio/química , Compostos de Cálcio/química , Manganês/química , Óxidos/química , Titânio/química , Catálise , Metano/química , Nanoestruturas/química , Oxirredução , Oxigênio/química , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA