Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Saudi Pharm J ; 32(7): 102108, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38868175

RESUMO

Chronic exposure to opioids can lead to downregulation of astrocytic glutamate transporter 1 (GLT-1), which regulates the majority of glutamate uptake. Studies from our lab revealed that beta-lactam antibiotic, ceftriaxone, attenuated hydrocodone-induced downregulation of GLT-1 as well as cystine/glutamate antiporter (xCT) expression in central reward brain regions. In this study, we investigated the effects of escalating doses of morphine and tested the efficacy of novel synthetic non-antibiotic drug, MC-100093, and ceftriaxone in attenuating the effects of morphine exposure in the expression of GLT-1, xCT, and neuroinflammatory factors (IL-6 and TGF-ß) in the nucleus accumbens (NAc). This study also investigated the effects of morphine and beta-lactams in locomotor activity, spontaneous alternation percentage (SAP) and number of entries in Y maze since opioids have effects in locomotor sensitization. Mice were exposed to moderate dose of morphine (20 mg/kg, i.p.) on days 1, 3, 5, 7, and a higher dose of morphine (150 mg/kg, i.p.) on day 9, and these mice were then behaviorally tested and euthanized on Day 10. Western blot analysis showed that exposure to morphine downregulated GLT-1 and xCT expression in the NAc, and both MC-100093 and ceftriaxone attenuated these effects. In addition, morphine exposure increased IL-6 mRNA and TGF-ß mRNA expression, and MC-100093 and ceftriaxone attenuated only the effect on IL-6 mRNA expression in the NAc. Furthermore, morphine exposure induced an increase in distance travelled, and MC-100093 and ceftriaxone attenuated this effect. In addition, morphine exposure decreased the SAP and increased the number of arm entries in Y maze, however, neither MC-100093 nor ceftriaxone showed any attenuating effect. Our findings demonstrated for the first time that MC-100093 and ceftriaxone attenuated morphine-induced downregulation of GLT-1 and xCT expression, and morphine-induced increase in neuroinflammatory factor, IL-6, as well as hyperactivity. These findings revealed the beneficial therapeutic effects of MC-100093 and ceftriaxone against the effects of exposure to escalated doses of morphine.

2.
Toxicology ; 477: 153277, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35914580

RESUMO

Environmental and genetic factors have been recognized to play major roles in the pathogenesis of autism. Here we examined the BTBR T+Itpr3tf/J (BTBR) mice's susceptibility, an autistic model, to the genotoxic effects and DNA repair dysregulation of methylmercury. Micronuclei formation and oxidative DNA damage were analyzed using the micronucleus/fluorescence in situ hybridization test and modified comet assay, respectively. The results showed higher centromeric-positive micronuclei and oxidative DNA damage in BTBR mice exposed to methylmercury than the unexposed mice, which indicates that mutagenesis aggravated in BTBR mice after methylmercury exposure. Lipid peroxides in BTBR mice were significantly elevated, with a decrease in reduced/oxidized glutathione ratio after methylmercury exposure, indicating an augmenting oxidant-antioxidant imbalance. The expression of several genes involved in DNA repair was markedly altered in BTBR mice after methylmercury exposure as evaluated via PCR array and RT-PCR analyses. Declining of the antioxidant defense and dysregulation in DNA repair process after methylmercury exposure may explain the aggravated genotoxic susceptibility of BTBR mice. Thus, autistic individuals exposed to methylmercury must be under regular medical follow-up through standard timetabled medical laboratory inquiry to allow for early recognition of any mutagenic changes. Additionally, strategies that elevate cellular antioxidants/DNA repair efficiency may counteract methylmercury-induced genotoxicity.


Assuntos
Transtorno Autístico , Compostos de Metilmercúrio , Animais , Antioxidantes , Transtorno Autístico/induzido quimicamente , Transtorno Autístico/genética , Dano ao DNA , Reparo do DNA , Modelos Animais de Doenças , Hibridização in Situ Fluorescente , Compostos de Metilmercúrio/toxicidade , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...