Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 232
Filtrar
1.
Kidney Int Rep ; 9(6): 1817-1835, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38899167

RESUMO

Introduction: Current therapeutic management of lupus nephritis (LN) fails to induce long-term remission in over 50% of patients, highlighting the urgent need for additional options. Methods: We analyzed differentially expressed genes (DEGs) in peripheral blood from patients with active LN (n = 41) and active nonrenal lupus (n = 62) versus healthy controls (HCs) (n = 497) from the European PRECISESADS project (NTC02890121), and dysregulated gene modules in a discovery (n = 26) and a replication (n = 15) set of active LN cases. Results: Replicated gene modules qualified for correlation analyses with serologic markers, and regulatory network and druggability analysis. Unsupervised coexpression network analysis revealed 20 dysregulated gene modules and stratified the active LN population into 3 distinct subgroups. These subgroups were characterized by low, intermediate, and high interferon (IFN) signatures, with differential dysregulation of the "B cell" and "plasma cells/Ig" modules. Drugs annotated to the IFN network included CC-motif chemokine receptor 1 (CCR1) inhibitors, programmed death-ligand 1 (PD-L1) inhibitors, and irinotecan; whereas the anti-CD38 daratumumab and proteasome inhibitor bortezomib showed potential for counteracting the "plasma cells/Ig" signature. In silico analysis demonstrated the low-IFN subgroup to benefit from calcineurin inhibition and the intermediate-IFN subgroup from B-cell targeted therapies. High-IFN patients exhibited greater anticipated response to anifrolumab whereas daratumumab appeared beneficial to the intermediate-IFN and high-IFN subgroups. Conclusion: IFN upregulation and B and plasma cell gene dysregulation patterns revealed 3 subgroups of LN, which may not necessarily represent distinct disease phenotypes but rather phases of the inflammatory processes during a renal flare, providing a conceptual framework for precision medicine in LN.

2.
Clin Immunol ; 264: 110241, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38735508

RESUMO

Primary Sjögren disease (pSD) is an autoimmune disease characterized by lymphoid infiltration of exocrine glands leading to dryness of the mucosal surfaces and by the production of autoantibodies. The pathophysiology of pSD remains elusive and no treatment with demonstrated efficacy is available yet. To better understand the biology underlying pSD heterogeneity, we aimed at identifying Consensus gene Modules (CMs) that summarize the high-dimensional transcriptomic data of whole blood samples in pSD patients. We performed unsupervised gene classification on four data sets and identified thirteen CMs. We annotated and interpreted each of these CMs as corresponding to cell type abundances or biological functions by using gene set enrichment analyses and transcriptomic profiles of sorted blood cell subsets. Correlation with independently measured cell type abundances by flow cytometry confirmed these annotations. We used these CMs to reconcile previously proposed patient stratifications of pSD. Importantly, we showed that the expression of modules representing lymphocytes and erythrocytes before treatment initiation is associated with response to hydroxychloroquine and leflunomide combination therapy in a clinical trial. These consensus modules will help the identification and translation of blood-based predictive biomarkers for the treatment of pSD.


Assuntos
Biomarcadores , Síndrome de Sjogren , Humanos , Síndrome de Sjogren/genética , Síndrome de Sjogren/sangue , Biomarcadores/sangue , Transcriptoma , Perfilação da Expressão Gênica/métodos , Hidroxicloroquina/uso terapêutico , Feminino , Redes Reguladoras de Genes , Linfócitos/metabolismo
3.
Clin Immunol ; 264: 110243, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38735509

RESUMO

OBJECTIVE: To link changes in the B-cell transcriptome from systemic lupus erythematosus (SLE) patients with those in their macroenvironment, including cellular and fluidic components. METHODS: Analysis was performed on 363 patients and 508 controls, encompassing transcriptomics, metabolomics, and clinical data. B-cell and whole-blood transcriptomes were analysed using DESeq and GSEA. Plasma and urine metabolomics peak changes were quantified and annotated using Ceu Mass Mediator database. Common sources of variation were identified using MOFA integration analysis. RESULTS: Cellular macroenvironment was enriched in cytokines, stress responses, lipidic synthesis/mobility pathways and nucleotide degradation. B cells shared these pathways, except nucleotide degradation diverted to nucleotide salvage pathway, and distinct glycosylation, LPA receptors and Schlafen proteins. CONCLUSIONS: B cells showed metabolic changes shared with their macroenvironment and unique changes directly or indirectly induced by IFN-α signalling. This study underscores the importance of understanding the interplay between B cells and their macroenvironment in SLE pathology.


Assuntos
Linfócitos B , Lúpus Eritematoso Sistêmico , Metabolômica , Lúpus Eritematoso Sistêmico/imunologia , Lúpus Eritematoso Sistêmico/metabolismo , Humanos , Linfócitos B/imunologia , Linfócitos B/metabolismo , Feminino , Adulto , Masculino , Transcriptoma , Pessoa de Meia-Idade , Perfilação da Expressão Gênica , Multiômica
4.
Methods Mol Biol ; 2779: 369-394, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38526795

RESUMO

Clinical studies are conducted to better understand the pathological mechanism of diseases and to find biomarkers associated with disease activity, drug response, or outcome prediction. Mass cytometry (MC) is a high-throughput single-cell technology that measures hundreds of cells per second with more than 40 markers per cell. Thus, it is a suitable tool for immune monitoring and biomarker discovery studies. Working in translational and clinical settings requires a careful experimental design to minimize, monitor, and correct the variations introduced during sample collection, preparation, acquisition, and analysis. In this review, we will focus on these important aspects of MC-related experiments and data curation in the context of translational clinical research projects.


Assuntos
Curadoria de Dados , Projetos de Pesquisa , Citometria de Fluxo , Biomarcadores/análise , Proteômica , Análise de Célula Única
5.
Ann Rheum Dis ; 83(7): 889-900, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38373843

RESUMO

OBJECTIVES: To unveil biological milieus underlying low disease activity (LDA) and remission versus active systemic lupus erythematosus (SLE). METHODS: We determined differentially expressed pathways (DEPs) in SLE patients from the PRECISESADS project (NTC02890121) stratified into patients fulfilling and not fulfilling the criteria of (1) Lupus LDA State (LLDAS), (2) Definitions of Remission in SLE remission, and (3) LLDAS exclusive of remission. RESULTS: We analysed data from 321 patients; 40.8% were in LLDAS, and 17.4% in DORIS remission. After exclusion of patients in remission, 28.3% were in LLDAS. Overall, 604 pathways differed significantly in LLDAS versus non-LLDAS patients with an false-discovery rate-corrected p (q)<0.05 and a robust effect size (dr)≥0.36. Accordingly, 288 pathways differed significantly between DORIS remitters and non-remitters (q<0.05 and dr≥0.36). DEPs yielded distinct molecular clusters characterised by differential serological, musculoskeletal, and renal activity. Analysis of partially overlapping samples showed no DEPs between LLDAS and DORIS remission. Drug repurposing potentiality for treating SLE was unveiled, as were important pathways underlying active SLE whose modulation could aid attainment of LLDAS/remission, including toll-like receptor (TLR) cascades, Bruton tyrosine kinase (BTK) activity, the cytotoxic T lymphocyte antigen 4 (CTLA-4)-related inhibitory signalling, and the nucleotide-binding oligomerization domain leucine-rich repeat-containing protein 3 (NLRP3) inflammasome pathway. CONCLUSIONS: We demonstrated for the first time molecular signalling pathways distinguishing LLDAS/remission from active SLE. LLDAS/remission was associated with reversal of biological processes related to SLE pathogenesis and specific clinical manifestations. DEP clustering by remission better grouped patients compared with LLDAS, substantiating remission as the ultimate treatment goal in SLE; however, the lack of substantial pathway differentiation between the two states justifies LLDAS as an acceptable goal from a biological perspective.


Assuntos
Lúpus Eritematoso Sistêmico , Indução de Remissão , Transcriptoma , Humanos , Lúpus Eritematoso Sistêmico/tratamento farmacológico , Lúpus Eritematoso Sistêmico/sangue , Lúpus Eritematoso Sistêmico/genética , Feminino , Adulto , Masculino , Pessoa de Meia-Idade , Índice de Gravidade de Doença , Estudos de Coortes
6.
Sci Rep ; 14(1): 3000, 2024 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-38321133

RESUMO

The clinical manifestations of SARS-CoV-2 infection vary widely among patients, from asymptomatic to life-threatening. Host genetics is one of the factors that contributes to this variability as previously reported by the COVID-19 Host Genetics Initiative (HGI), which identified sixteen loci associated with COVID-19 severity. Herein, we investigated the genetic determinants of COVID-19 mortality, by performing a case-only genome-wide survival analysis, 60 days after infection, of 3904 COVID-19 patients from the GEN-COVID and other European series (EGAS00001005304 study of the COVID-19 HGI). Using imputed genotype data, we carried out a survival analysis using the Cox model adjusted for age, age2, sex, series, time of infection, and the first ten principal components. We observed a genome-wide significant (P-value < 5.0 × 10-8) association of the rs117011822 variant, on chromosome 11, of rs7208524 on chromosome 17, approaching the genome-wide threshold (P-value = 5.19 × 10-8). A total of 113 variants were associated with survival at P-value < 1.0 × 10-5 and most of them regulated the expression of genes involved in immune response (e.g., CD300 and KLR genes), or in lung repair and function (e.g., FGF19 and CDH13). Overall, our results suggest that germline variants may modulate COVID-19 risk of death, possibly through the regulation of gene expression in immune response and lung function pathways.


Assuntos
COVID-19 , Humanos , Estudo de Associação Genômica Ampla/métodos , Predisposição Genética para Doença , SARS-CoV-2 , Genótipo
7.
Res Sq ; 2024 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-38260685

RESUMO

Lupus nephritis (LN) represents one of the most severe complications of systemic lupus erythematosus, leading to end-stage kidney disease in worst cases. Current first-line therapies for LN, including mycophenolate mofetil (MMF) and azathioprine (AZA), fail to induce long-term remission in 60-70% of the patients, evidencing the urgent need to delve into the molecular knowledge-gap behind the non-response to these therapies. A longitudinal cohort of treated LN patients including clinical, cellular and transcriptomic data, was analyzed. Gene-expression signatures behind non-response to different drugs were revealed by differential expression analysis. Drug-specific non-response mechanisms and cell proportion differences were identified. Blood cell subsets mediating non-response were described using single-cell RNASeq data. We show that AZA and MMF non-response implicates different cells and regulatory functions. Mechanistic models were used to suggest add-on therapies to improve their current performance. Our results provide new insights into the molecular mechanisms associated with treatment failures in LN.

8.
Joint Bone Spine ; 91(2): 105627, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37640261

RESUMO

The improved understanding of the molecular basis of innate immunity have led to the identification of type I interferons (IFNs), particularly IFN-α, as central mediators in the pathogenesis of several Immune-mediated inflammatory diseases (IMIDs) such as systemic lupus erythematosus (SLE), systemic sclerosis, inflammatory myositis and Sjögren's syndrome. Here, we review the main data regarding the opportunity to target type I IFNs for the treatment of IMIDs. Type I IFNs and their downstream pathways can be targeted pharmacologically in several manners. One approach is to use monoclonal antibodies against IFNs or the IFN-receptors (IFNARs, such as with anifrolumab). The downstream signaling pathways of type I IFNs also contain several targets of interest in IMIDs, such as JAK1 and Tyk2. Of these, anifrolumab is licensed and JAK1/Tyk2 inhibitors are in phase III trials in SLE. Targeting IFN-Is for the treatment of SLE is already a reality and in the near future may prove useful in other IMIDs. IFN assays will find a role in routine clinical practice for the care of IMIDs as further validation work is completed and a greater range of targeted therapies becomes available.


Assuntos
Interferon Tipo I , Lúpus Eritematoso Sistêmico , Síndrome de Sjogren , Humanos , Interferon Tipo I/uso terapêutico , Interferon Tipo I/metabolismo , Interferons/uso terapêutico , Lúpus Eritematoso Sistêmico/tratamento farmacológico , Imunidade Inata , Agentes de Imunomodulação
9.
Arthritis Rheumatol ; 76(4): 614-619, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38073021

RESUMO

OBJECTIVE: Systemic lupus erythematosus (SLE) is an autoimmune disease resulting in debilitating clinical manifestations that vary in severity by race and ethnicity with a disproportionate burden in African American, Mestizo, and Asian populations compared with populations of European descent. Differences in global and local genetic ancestry may shed light on the underlying mechanisms contributing to these disparities, including increased prevalence of lupus nephritis, younger age of symptom onset, and presence of autoantibodies. METHODS: A total of 1,139 European, African American, and Mestizos patients with SLE were genotyped using the Affymetrix LAT1 World array. Global ancestry proportions were estimated using ADMIXTURE, and local ancestry was estimated using RFMIXv2.0. We investigated associations between lupus nephritis, age at onset, and autoantibody status with both global and local ancestry proportions within the Major Histocompatibility Complex region. RESULTS: Our results showed small effect sizes that did not meet the threshold for statistical significance for global or local ancestry proportions in either African American or Mestizo patients with SLE who presented with the clinical manifestations of interest compared with those who did not. CONCLUSION: These findings suggest that local genetic ancestry within the Major Histocompatibility Complex region is not a major contributor to these SLE manifestations among patients with SLE from admixed populations.


Assuntos
Lúpus Eritematoso Sistêmico , Nefrite Lúpica , Humanos , Nefrite Lúpica/genética , Predisposição Genética para Doença , Complexo Principal de Histocompatibilidade , Autoanticorpos/genética , Brancos
10.
Arthritis Rheumatol ; 76(5): 751-762, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38130019

RESUMO

OBJECTIVE: The biologic diagnosis of primary Sjögren disease (SjD) mainly relies on anti-Ro60/SSA antibodies, whereas the significance of anti-Ro52/TRIM21 antibodies currently remains unclear. The aim of this study was to characterize the clinical, serological, biologic, transcriptomic, and interferon profiles of patients with SjD according to their anti-Ro52/TRIM21 antibody status. METHODS: Patients with SjD from the European PRECISESADS (n = 376) and the Brittany Diagnostic Suspicion of primitive Sjögren's Syndrome (DIApSS); (n = 146) cohorts were divided into four groups: double negative (Ro52-/Ro60-), isolated anti-Ro52/TRIM21 positive (Ro52+), isolated anti-Ro60/SSA positive (Ro60+), and double-positive (Ro52+/Ro60+) patients. Clinical information; EULAR Sjögren Syndrome Disease Activity Index, a score representing systemic activity; and biologic markers associated with disease severity were evaluated. Transcriptome data obtained from whole blood by RNA sequencing and type I and II interferon signatures were analyzed for PRECISESADS patients. RESULTS: In the DIApSS cohort, Ro52+/Ro60+ patients showed significantly more parotidomegaly (33.3% vs 0%-11%) along with higher ß2-microglobulin (P = 0.0002), total immunoglobulin (P < 0.0001), and erythrocyte sedimentation rate levels (P = 0.002) as well as rheumatoid factor (RF) positivity (66.2% vs 20.8%-25%) compared to other groups. The PRECISESADS cohort corroborated these observations, with increased arthritis (P = 0.046), inflammation (P = 0.005), hypergammaglobulinemia (P < 0.0001), positive RF (P < 0.0001), leukopenia (P = 0.004), and lymphopenia (P = 0.009) in Ro52+/Ro60+ patients. Cumulative EULAR Sjögren Syndrome Disease Activity Index results further confirmed these disparities (P = 0.002). Transcriptome analysis linked anti-Ro52/TRIM21 antibody positivity to interferon pathway activation as an underlying cause for these clinical correlations. CONCLUSION: These results suggest that the combination of anti-Ro52/TRIM21 and anti-Ro60/SSA antibodies is associated with a clinical, biologic, and transcriptional profile linked to greater disease severity in SjD through the potentiation of the interferon pathway activation by anti-Ro52/TRIM21 antibodies.


Assuntos
Autoantígenos , Interferons , RNA Citoplasmático Pequeno , Ribonucleoproteínas , Índice de Gravidade de Doença , Síndrome de Sjogren , Humanos , Síndrome de Sjogren/imunologia , Feminino , Pessoa de Meia-Idade , Masculino , Ribonucleoproteínas/imunologia , Adulto , Autoanticorpos/imunologia , Idoso , Anticorpos Antinucleares/imunologia
12.
Front Immunol ; 14: 1257085, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38098483

RESUMO

Introduction: Systemic lupus erythematosus (SLE) is a clinically heterogeneous disease that presents a challenge for clinicians. To identify potential biomarkers for diagnosis and disease activity in SLE, we investigated a selected yet broad panel of cytokines and autoantibodies in patients with SLE, healthy controls (HC), and patients with other autoimmune diseases (AIDs). Methods: Serum samples from 422 SLE patients, 546 HC, and 1223 other AIDs were analysed within the frame of the European PRECISESADS project (NTC02890121). Cytokine levels were determined using Luminex panels, and autoantibodies using different immunoassays. Results: Of the 83 cytokines analysed, 29 differed significantly between patients with SLE and HC. Specifically, CCL8, CXCL13, and IL-1RA levels were elevated in patients with active, but not inactive, SLE versus HC, as well as in patients with SLE versus other AIDs. The levels of these cytokines also correlated with SLE Disease Activity Index 2000 (SLEDAI-2K) scores, among five other cytokines. Overall, the occurrence of autoantibodies was similar across SLEDAI-2K organ domains, and the correlations between autoantibodies and activity in different organ domains were weak. Discussion: Our findings suggest that, upon validation, CCL8, CXCL13, and IL-1RA could serve as promising serum biomarkers of activity in SLE.


Assuntos
Doenças Autoimunes , Lúpus Eritematoso Sistêmico , Humanos , Proteína Antagonista do Receptor de Interleucina 1 , Citocinas , Biomarcadores , Autoanticorpos , Quimiocina CCL8 , Quimiocina CXCL13
13.
Nat Rev Rheumatol ; 19(9): 541-542, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37438403
14.
Front Immunol ; 14: 1200769, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37346043

RESUMO

Introduction: Systemic lupus erythematosus is an autoimmune disease with multisystemic involvement including intestinal inflammation. Lupus-associated intestinal inflammation may alter the mucosal barrier where millions of commensals have a dynamic and selective interaction with the host immune system. Here, we investigated the consequences of the intestinal inflammation in a TLR7-mediated lupus model. Methods: IgA humoral and cellular response in the gut was measured. The barrier function of the gut epithelial layer was characterised. Also, microbiota composition in the fecal matter was analysed as well as the systemic humoral response to differential commensals. Results: The lupus-associated intestinal inflammation modifies the IgA+ B cell response in the gut-associated lymphoid tissue in association with dysbiosis. Intestinal inflammation alters the tight junction protein distribution in the epithelial barrier, which correlated with increased permeability of the intestinal barrier and changes in the microbiota composition. This permeability resulted in a differential humoral response against intestinal commensals. Discussion: Lupus development can cause alterations in microbiota composition, allowing specific species to colonize only the lupus gut. Eventually, these alterations and the changes in gut permeability induced by intestinal inflammation could lead to bacterial translocation.


Assuntos
Doenças Autoimunes , Humanos , Linfócitos B , Translocação Bacteriana , Inflamação , Imunoglobulina A
15.
Front Immunol ; 14: 1177245, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37287975

RESUMO

With Varicella-Zoster Virus (VZV) being an exclusive human pathogen, human induced pluripotent stem cell (hiPSC)-derived neural cell culture models are an emerging tool to investigate VZV neuro-immune interactions. Using a compartmentalized hiPSC-derived neuronal model allowing axonal VZV infection, we previously demonstrated that paracrine interferon (IFN)-α2 signalling is required to activate a broad spectrum of interferon-stimulated genes able to counteract a productive VZV infection in hiPSC-neurons. In this new study, we now investigated whether innate immune signalling by VZV-challenged macrophages was able to orchestrate an antiviral immune response in VZV-infected hiPSC-neurons. In order to establish an isogenic hiPSC-neuron/hiPSC-macrophage co-culture model, hiPSC-macrophages were generated and characterised for phenotype, gene expression, cytokine production and phagocytic capacity. Even though immunological competence of hiPSC-macrophages was shown following stimulation with the poly(dA:dT) or treatment with IFN-α2, hiPSC-macrophages in co-culture with VZV-infected hiPSC-neurons were unable to mount an antiviral immune response capable of suppressing a productive neuronal VZV infection. Subsequently, a comprehensive RNA-Seq analysis confirmed the lack of strong immune responsiveness by hiPSC-neurons and hiPSC-macrophages upon, respectively, VZV infection or challenge. This may suggest the need of other cell types, like T-cells or other innate immune cells, to (co-)orchestrate an efficient antiviral immune response against VZV-infected neurons.


Assuntos
Varicela , Herpes Zoster , Células-Tronco Pluripotentes Induzidas , Infecção pelo Vírus da Varicela-Zoster , Humanos , Herpesvirus Humano 3 , Técnicas de Cocultura , Replicação Viral/fisiologia , Neurônios , Macrófagos , Interferons , Antivirais , Imunidade Inata
16.
Clin Immunol ; 252: 109632, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37178857

RESUMO

BACKGROUND: Meniere Disease (MD) is an inner ear syndrome, characterized by episodes of vertigo, tinnitus and fluctuating sensorineural hearing loss. The pathological mechanism leading to sporadic MD is still poorly understood, however an allergic inflammatory response seems to be involved in some patients with MD. OBJECTIVE: Decipher an immune signature associated with the syndrome. METHODS: We performed mass cytometry immune profiling on peripheral blood from MD patients and controls. We analyzed differences in state and differences in abundance of the different cellular subsets. IgE levels were quantified through ELISA on supernatant of cultured whole blood. RESULTS: We have identified two clusters of individuals according to the single cell cytokine profile. These clusters presented differences in IgE levels, immune cell population abundance, including a reduction of CD56dim NK-cells, and changes in cytokine expression with a different response to bacterial and fungal antigens. CONCLUSION: Our results support a systemic inflammatory response in some MD patients that show a type 2 response with allergic phenotype, which could benefit from personalized IL-4 blockers.


Assuntos
Perda Auditiva Neurossensorial , Doença de Meniere , Humanos , Doença de Meniere/complicações , Doença de Meniere/epidemiologia , Vertigem/complicações , Citocinas , Perda Auditiva Neurossensorial/complicações , Síndrome , Imunoglobulina E
18.
J Autoimmun ; 136: 103025, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36996699

RESUMO

OBJECTIVES: We aimed at investigating the whole-blood transcriptome, expression quantitative trait loci (eQTLs), and levels of selected serological markers in patients with SLE versus healthy controls (HC) to gain insight into pathogenesis and identify drug targets. METHODS: We analyzed differentially expressed genes (DEGs) and dysregulated gene modules in a cohort of 350 SLE patients and 497 HC from the European PRECISESADS project (NTC02890121), split into a discovery (60%) and a replication (40%) set. Replicated DEGs qualified for eQTL, pathway enrichment, regulatory network, and druggability analysis. For validation purposes, a separate gene module analysis was performed in an independent cohort (GSE88887). RESULTS: Analysis of 521 replicated DEGs identified multiple enriched interferon signaling pathways through Reactome. Gene module analysis yielded 18 replicated gene modules in SLE patients, including 11 gene modules that were validated in GSE88887. Three distinct gene module clusters were defined i.e., "interferon/plasma cells", "inflammation", and "lymphocyte signaling". Predominant downregulation of the lymphocyte signaling cluster denoted renal activity. By contrast, upregulation of interferon-related genes indicated hematological activity and vasculitis. Druggability analysis revealed several potential drugs interfering with dysregulated genes within the "interferon" and "PLK1 signaling events" modules. STAT1 was identified as the chief regulator in the most enriched signaling molecule network. Drugs annotated to 15 DEGs associated with cis-eQTLs included bortezomib for its ability to modulate CTSL activity. Belimumab was annotated to TNFSF13B (BAFF) and daratumumab was annotated to CD38 among the remaining replicated DEGs. CONCLUSIONS: Modulation of interferon, STAT1, PLK1, B and plasma cell signatures showed promise as viable approaches to treat SLE, pointing to their importance in SLE pathogenesis.


Assuntos
Lúpus Eritematoso Sistêmico , Medicina de Precisão , Humanos , Transcriptoma , Redes Reguladoras de Genes , Interferons/genética , Lúpus Eritematoso Sistêmico/diagnóstico , Lúpus Eritematoso Sistêmico/tratamento farmacológico , Lúpus Eritematoso Sistêmico/genética
19.
Clin Rev Allergy Immunol ; 64(3): 392-411, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35749015

RESUMO

Systemic lupus erythematosus, systemic sclerosis, rheumatoid arthritis, and Sjögren's syndrome are four major autoimmune rheumatic diseases characterized by the presence of autoantibodies, caused by a dysregulation of the immune system that leads to a wide variety of clinical manifestations. These conditions present complex etiologies strongly influenced by multiple environmental and genetic factors. The human leukocyte antigen (HLA) region was the first locus identified to be associated and still represents the strongest susceptibility factor for each of these conditions, particularly the HLA class II genes, including DQA1, DQB1, and DRB1, but class I genes have also been associated. Over the last two decades, the genetic component of these disorders has been extensively investigated and hundreds of non-HLA risk genetic variants have been uncovered. Furthermore, it is widely accepted that autoimmune rheumatic diseases share molecular disease pathways, such as the interferon (IFN) type I pathways, which are reflected in a common genetic background. Some examples of well-known pleiotropic loci for autoimmune rheumatic diseases are the HLA region, DNASEL13, TNIP1, and IRF5, among others. The identification of the causal molecular mechanisms behind the genetic associations is still a challenge. However, recent advances have been achieved through mouse models and functional studies of the loci. Here, we provide an updated overview of the genetic architecture underlying these four autoimmune rheumatic diseases, with a special focus on the HLA region.


Assuntos
Artrite Reumatoide , Doenças Autoimunes , Lúpus Eritematoso Sistêmico , Doenças Reumáticas , Escleroderma Sistêmico , Síndrome de Sjogren , Animais , Camundongos , Humanos , Síndrome de Sjogren/genética , Artrite Reumatoide/genética , Lúpus Eritematoso Sistêmico/genética , Antígenos HLA/genética , Antígenos de Histocompatibilidade Classe II , Escleroderma Sistêmico/genética , Fatores Reguladores de Interferon
20.
Comput Biol Med ; 152: 106373, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36462367

RESUMO

Systemic lupus erythematosus and primary Sjogren's syndrome are complex systemic autoimmune diseases that are often misdiagnosed. In this article, we demonstrate the potential of machine learning to perform differential diagnosis of these similar pathologies using gene expression and methylation data from 651 individuals. Furthermore, we analyzed the impact of the heterogeneity of these diseases on the performance of the predictive models, discovering that patients assigned to a specific molecular cluster are misclassified more often and affect to the overall performance of the predictive models. In addition, we found that the samples characterized by a high interferon activity are the ones predicted with more accuracy, followed by the samples with high inflammatory activity. Finally, we identified a group of biomarkers that improve the predictions compared to using the whole data and we validated them with external studies from other tissues and technological platforms.


Assuntos
Lúpus Eritematoso Sistêmico , Síndrome de Sjogren , Humanos , Síndrome de Sjogren/diagnóstico , Síndrome de Sjogren/genética , Diagnóstico Diferencial , Multiômica , Lúpus Eritematoso Sistêmico/diagnóstico , Lúpus Eritematoso Sistêmico/genética , Aprendizado de Máquina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...