Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Adv ; 5(5): eaau2620, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-31149629

RESUMO

Diamonds growing in the Earth's mantle often trap inclusions of fluids that are highly saline in composition. These fluids are thought to emerge from deep in subduction zones and may also be involved in the generation of some of the kimberlite magmas. However, the source of these fluids and the mechanism of their transport into the mantle lithosphere are unresolved. Here, we present experimental results showing that alkali chlorides are stable solid phases in the mantle lithosphere below 110 km. These alkali chlorides are formed by the reaction of subducted marine sediments with peridotite and show identical K/Na ratios to fluid inclusions in diamond. At temperatures >1100°C and low pressures, the chlorides are unstable; here, potassium is accommodated in mica and melt. The reaction of subducted sediments with peridotite explains the occurrence of Mg carbonates and the highly saline fluids found in diamonds and in chlorine-enriched kimberlite magmas.

2.
Proc Natl Acad Sci U S A ; 102(39): 13755-60, 2005 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-16174733

RESUMO

Bulk chondritic meteorites and terrestrial planets show a monotonic depletion in moderately volatile and volatile elements relative to the Sun's photosphere and CI carbonaceous chondrites. Although volatile depletion was the most fundamental chemical process affecting the inner solar nebula, debate continues as to its cause. Carbonaceous chondrites are the most primitive rocks available to us, and fine-grained, volatile-rich matrix is the most primitive component in these rocks. Several volatile depletion models posit a pristine matrix, with uniform CI-like chemistry across the different chondrite groups. To understand the nature of volatile fractionation, we studied minor and trace element abundances in fine-grained matrices of a variety of carbonaceous chondrites. We find that matrix trace element abundances are characteristic for a given chondrite group; they are depleted relative to CI chondrites, but are enriched relative to bulk compositions of their parent meteorites, particularly in volatile siderophile and chalcophile elements. This enrichment produces a highly nonmonotonic trace element pattern that requires a complementary depletion in chondrule compositions to achieve a monotonic bulk. We infer that carbonaceous chondrite matrices are not pristine: they formed from a material reservoir that was already depleted in volatile and moderately volatile elements. Additional thermal processing occurred during chondrule formation, with exchange of volatile siderophile and chalcophile elements between chondrules and matrix. This chemical complementarity shows that these chondritic components formed in the same nebula region.

3.
Nature ; 436(7053): 1005-8, 2005 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-16107845

RESUMO

Abyssal peridotites are assumed to represent the mantle residue of mid-ocean-ridge basalts (MORBs). However, the osmium isotopic compositions of abyssal peridotites and MORB do not appear to be in equilibrium, raising questions about the cogenetic relationship between those two reservoirs. However, the cause of this isotopic mismatch is mainly due to a drastic filtering of the data based on the possibility of osmium contamination by sea water. Here we present a detailed study of magmatic sulphides (the main carrier of osmium) in abyssal peridotites and show that the 187Os/188Os ratio of these sulphides is of primary mantle origin and can reach radiogenic values suggesting equilibrium with MORB. Thus, the effect of sea water on the osmium systematics of abyssal peridotites has been overestimated and consequently there is no true osmium isotopic gap between MORBs and abyssal peridotites.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...