Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 257(Pt 1): 128573, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38052290

RESUMO

This study explores the eco-friendly biosynthesis of silver nanoparticles (AgNPs) utilizing Camellia sinensis leaf extract. We assess their antioxidant and antibacterial properties. Furthermore, we impregnated AgNPs into 2 % chitosan (CHS) gel and assessed their wound-healing potential in Escherichia coli and Staphylococcus aureus infected wounds. Optimized AgNPs demonstrated a mean particle size of 36.90 ± 1.22 nm and a PDI of 0.049 ± 0.001. Green-synthesized AgNPs exhibited enhanced free radical inhibition (IC50: 31.45 µg/mL, 34.01 µg/mL, 27.40 µg/mL) compared to leaf extract (IC50: 52.67 µg/mL, 59.64 µg/mL, 97.50 µg/mL) in DPPH, hydrogen peroxide, and nitric oxide free radical scavenging assays, respectively. The MIC/MBC values of AgNPs against E. coli and S. aureus were 5 ppm/ 7.5 ppm and 10 ppm/ 15 ppm, respectively. Furthermore, our study showed that green-synthesized AgNPs at MIC significantly reduced the biofilm production of E. coli (70.37 %) and S. aureus (67.40 %). The CHS/AgNPs gel exhibited potent wound healing activities, comparable to a commercial cream with the re-epithelialization period of 8.16 ± 0.75. Histological analysis demonstrated enhanced skin regeneration with a thicker epidermal layer, well-defined papillary dermal structure, and organized collagen fibers. In summary, these findings hold promise for addressing bacterial infections, particularly those associated with biofilms-related wound infections.


Assuntos
Camellia sinensis , Quitosana , Nanopartículas Metálicas , Prata/química , Staphylococcus aureus , Quitosana/química , Nanopartículas Metálicas/química , Escherichia coli , Antibacterianos/química , Radicais Livres , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Testes de Sensibilidade Microbiana
2.
Int J Biol Macromol ; 253(Pt 6): 127402, 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-37832620

RESUMO

Revaprazan (REV), a novel reversible Proton Pump Inhibitor (PPI) used to treat peptic ulcers, faces challenges in therapeutic efficacy due to its poor dissolution properties and a short half-life. Solid lipid nanoparticles (SLNs) have emerged as a drug delivery system capable of enhancing dissolution and bioavailability of lipid soluble drugs. Here, we report on the development and optimization of a smart gastro-retentive raft system of REV-loaded SLNs (GRS/REV-SLNs) to enhance drug bioavailability and gastric retention. The optimized REV-SLNs had a particle size of 120 nm, a Polydispersity Index (PDI) of 0.313, a zeta potential of -20.7 mV, and efficient drug incorporation of 88 %. Transmission Electron Microscopy (TEM) affirmed the spherical morphology of these REV-SLNs, while Fourier Transform Infrared Spectroscopy (FTIR) revealed no chemical interactions among components. In-vitro assessment of the final GRS/REV-SLNs demonstrated sustained gelation and buoyancy for over 12 h, which would significantly enhance REV retention and its release within the stomach. Further assessments in rats confirmed successful gel transformation within the stomach, resulting in the improved bioavailability of REV. Thus, the development of GRS/REV-SLNs significantly improved the delivery and bioavailability of REV within the stomach, and offers a potentially improved method of treating peptic ulcers.


Assuntos
Nanopartículas , Úlcera Péptica , Ratos , Animais , Portadores de Fármacos/química , Lipídeos/química , Sistemas de Liberação de Medicamentos/métodos , Nanopartículas/química , Úlcera Péptica/tratamento farmacológico , Tamanho da Partícula
3.
Cureus ; 15(9): e45859, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37881391

RESUMO

BACKGROUND: The primary objective of this study was to assess the awareness among respondents in Aseer, Saudi Arabia, regarding the link between uncontrolled hypertension (HTN) and the potential development of heart failure (HF). Furthermore, we examined variations in the knowledge of essential information based on whether participants had a history of HF or HTN. METHODS: Employing a snowball sampling method, we conducted a prospective online cross-sectional survey targeting adults aged 18 years and above, encompassing both males and females. The survey participants were residents of the Aseer region with access to the internet. RESULTS: A total of 418 responses were included in the final analysis; 26.8% were aged 45-55 years, 53.8% were males, 69.1% held a university degree, 17.5% were healthcare workers (HCWs), and 26.8% reported having HTN. There was a statistically significant difference between respondents with and without HF regarding knowledge about uncontrolled HTN and its definition. Television and the internet were the most prominent sources of information, with 31.8% and 35.6%, respectively. Of the responders, 50% knew that uncontrolled HTN can lead to HF. Gender differences were significant, with 51.20% of females and 48.80% of males recognizing this link (p = 0.039). HCWs showed higher awareness compared to non-HCWs (70.81% vs. 29.19%, p < 0.001). HF awareness significantly impacted the respondent's knowledge (80.38%, p < 0.001). Those knowledgeable about uncontrolled HTN were more likely to be aware of this connection (60.29% vs. 25.84%, p < 0.001). CONCLUSIONS: A large sector of the general population did not know that uncontrolled HTN may cause HF, especially those free from both conditions.

4.
Molecules ; 28(6)2023 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-36985575

RESUMO

The convenient and highly compliant route for the delivery of active pharmaceutical ingredients is the tablet. A versatile platform of tablets is available for the delivery of therapeutic agents to the gastrointestinal tract. This study aimed to prepare gastro retentive drug delivery floating tablets of silymarin to improve its oral bioavailability and solubility. Hydroxypropyl methylcellulose (HPMCK4M and HPMCK15), Carbopol 934p and sodium bicarbonate were used as a matrix, floating enhancer and gas generating agent, respectively. The prepared tablets were evaluated for physicochemical parameters such as hardness, weight variation, friability, floating properties (floating lag time, total floating time), drug content, stability study, in vitro drug release, in vivo floating behavior and in vivo pharmacokinetics. The drug-polymer interaction was studied by Differential Scanning Calorimetry (DSC) thermal analysis and Fourier transform infrared (FTIR). The floating lag time of the formulation was within the prescribed limit (<2 min). The formulation showed good matrix integrity and retarded the release of drug for >12 h. The dissolution can be described by zero-order kinetics (r2 = 0.979), with anomalous diffusion as the release mechanism (n = 0.65). An in vivo pharmacokinetic study showed that Cmax and AUC were increased by up to two times in comparison with the conventional dosage form. An in vivo imaging study showed that the tablet was present in the stomach for 12 h. It can be concluded from this study that the combined matrix system containing hydrophobic and hydrophilic polymers min imized the burst release of the drug from the tablet and achieved a drug release by zero-order kinetics, which is practically difficult with only a hydrophilic matrix. An in vivo pharmacokinetic study elaborated that the bioavailability and solubility of silymarin were improved with an increased mean residence time.


Assuntos
Silimarina , Preparações de Ação Retardada/química , Disponibilidade Biológica , Sistemas de Liberação de Medicamentos , Comprimidos/química , Solubilidade
5.
Pharmaceutics ; 15(2)2023 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-36839741

RESUMO

This study aimed at developing the microwave-treated, physically cross-linked polymer blend film, optimizing the microwave treatment time, and testing for physicochemical attributes and wound healing potential in diabetic animals. Microwave-treated and untreated films were prepared by the solution casting method and characterized for various attributes required by a wound healing platform. The optimized formulation was tested for skin regeneration potential in the diabetes-induced open-incision animal model. The results indicated that the optimized polymer film formulation (MB-3) has significantly enhanced physicochemical properties such as high moisture adsorption (154.6 ± 4.23%), decreased the water vapor transmission rate (WVTR) value of (53.0 ± 2.8 g/m2/h) and water vapor permeability (WVP) value (1.74 ± 0.08 g mm/h/m2), delayed erosion (18.69 ± 4.74%), high water uptake, smooth and homogenous surface morphology, higher tensile strength (56.84 ± 1.19 MPa), and increased glass transition temperature and enthalpy (through polymer hydrophilic functional groups depicting efficient cross-linking). The in vivo data on day 16 of post-wounding indicated that the wound healing occurred faster with significantly increased percent re-epithelialization and enhanced collagen deposition with optimized MB-3 film application compared with the untreated group. The study concluded that the microwave-treated polymer blend films have sufficiently enhanced physical properties, making them an effective candidate for ameliorating the diabetic wound healing process and hastening skin tissue regeneration.

6.
Cureus ; 14(11): e31667, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36425051

RESUMO

Background Coronary artery disease (CAD), a severe cardiovascular disorder, still remains the major reason for death among adults. In Saudi Arabia, the most common risk factors noticed were hypertension, diabetes, smoking, and dyslipidemia. To date, various therapies have been used for managing CAD, but primary prevention remains the cornerstone to reducing the incidence of CAD-linked mortality and morbidity. The present research aimed to evaluate public awareness levels about CAD in the Aseer region of Saudi Arabia. Materials and methods A structured questionnaire was used to assess the demographic variables, information regarding risk factors, and knowledge and awareness about CAD. To analyze the knowledge and awareness of the general population regarding CAD, 26 well-constructed questions were framed and asked. General characteristics like knowledge, awareness, risk factors, signs and symptoms, complications, effects, treatment, and prevention of CAD were recorded by asking questions with different options. The data obtained were then subjected to statistical analysis using SPSS version 20.0 software (IBM Corp., Armonk, NY). Results Out of 651 participants, 66.51% were males and 33.48% were females, and 36.40% were aged between 26 and 35 years. Of the participants, 14.13% had a positive family history of CAD, 66.05% had inactive lifestyle habits, and 59.60% did not report any stress. A total of 61.29% were unaware of CAD, but many of them were aware of the risk factors, symptoms, and complications of the disease. A total of 5.529% were suffering from CAD, with a time period of less than one year. Only 1.84% of participants were taking medicines for CAD. Conclusion Our study suggested that the community of the Aseer region of Saudi Arabia has meager knowledge and awareness about CAD. Westernized lifestyles and urbanization have caused poor physical well-being in people, leading to increased risk factors for CAD. Thus, we suggest that different educational public health awareness programs should be implemented by the Ministry of Health, Saudi Arabia to decrease the prevalence of these life-threatening diseases.

7.
Molecules ; 27(22)2022 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-36431808

RESUMO

Diabetes mellitus is one of the most prevalent metabolic disorders characterized by hyperglycemia due to impaired glucose metabolism. Overproduction of free radicals due to chronic hyperglycemia may cause oxidative stress, which delays wound healing in diabetic conditions. For people with diabetes, this impeded wound healing is one of the predominant reasons for mortality and morbidity. The study aimed to develop an Ocimum sanctum leaf extract-mediated green synthesis of titanium dioxide (TiO2) nanoparticles (NPs) and further incorporate them into 2% chitosan (CS) gel for diabetic wound healing. UV-visible spectrum analysis recorded the sharp peak at 235 and 320 nm, and this was the preliminary sign for the biosynthesis of TiO2 NPs. The FTIR analysis was used to perform a qualitative validation of the biosynthesized TiO2 nanoparticles. XRD analysis indicated the crystallinity of TiO2 NPs in anatase form. Microscopic investigation revealed that TiO2 NPs were spherical and polygonal in shape, with sizes ranging from 75 to 123 nm. The EDX analysis of green synthesized NPs showed the presence of TiO2 NPs, demonstrating the peak of titanium ion and oxygen. The hydrodynamic diameter and polydispersity index (PDI) of the TiO2 NPs were found to be 130.3 nm and 0.237, respectively. The developed TiO2 NPs containing CS gel exhibited the desired thixotropic properties with pseudoplastic behavior. In vivo wound healing studies and histopathological investigations of healed wounds demonstrated the excellent wound-healing efficacy of TiO2 NPs containing CS gel in diabetic rats.


Assuntos
Diabetes Mellitus Experimental , Hiperglicemia , Nanopartículas , Óleos Voláteis , Ratos , Animais , Titânio/farmacologia , Ocimum sanctum/metabolismo , Diabetes Mellitus Experimental/tratamento farmacológico , Nanopartículas/ultraestrutura , Cicatrização , Extratos Vegetais/farmacologia , Extratos Vegetais/metabolismo
8.
Biomed Res Int ; 2022: 7792180, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35971450

RESUMO

Finasteride is considered the drug of choice for androgenic alopecia and benign prostate hyperplasia. The aim of the study was to formulate nanodrug carriers of finasteride with enhanced retentive properties in the skin. The finasteride was formulated as solid lipid nanoparticles that were decorated with different concentrations of chitosan for improved retentive properties. Solid lipid nanoparticles (SLNs) were synthesized by "high-speed homogenization technique" using stearic acid as a solid lipid while PEG-6000 and Tween-80 were used as surfactants. The SLNs were evaluated for particle size, polydispersity index (PDI), zeta potential, drug entrapment efficiency, and drug release behavior. The mean particle size of SLNs was in the range of 10.10 nm to 144.2 nm. The PDI ranged from 0.244 to 0.412 while zeta potential was in the range of 8.9 mV to 62.6 mV. The drug entrapment efficiency in chitosan undecorated formulations was 48.3% while an increase in drug entrapment was observed in chitosan-decorated formulations (51.1% to 62%). The in vitro drug release studies of SLNs showed an extended drug release for 24 hours after 4 hours of initial burst release. The extended drug release was observed in chitosan-coated SLNs in comparison with uncoated nanoparticles. The permeation and retention study revealed higher retention of drug in the skin and low permeation with chitosan-decorated SLNs that ranged from 39.4 µg/cm2 to 13.2 µg/cm2. TEM images depicted spherical shape of SLNs. The stability study confirmed stable formulations in temperature range of 5°C and 40°C for three months. It is concluded from this study that the SLNs of finasteride were successfully formulated and chitosan decoration enhanced the drug retention in the skin layers. Therefore, these formulations could be used in androgenic alopecia and benign prostate hyperplasia to avoid the side effects, drug degradation, and prolonged use of drug with conventional oral therapy.


Assuntos
Quitosana , Nanopartículas , Alopecia , Química Farmacêutica/métodos , Quitosana/química , Portadores de Fármacos/química , Liberação Controlada de Fármacos , Finasterida , Humanos , Hiperplasia , Lipídeos/química , Lipossomos , Masculino , Nanopartículas/química , Tamanho da Partícula
9.
Immunotherapy ; 2022 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-35852105

RESUMO

Breast cancer is one of the most common causes of cancer-related morbidity and mortality in women worldwide. Early diagnosis and an appropriate therapeutic approach for all cancers are climacterics for a favorable prognosis. Targeting the immune system in breast cancer is already a clinical reality with notable successes, specifically with checkpoint blockade antibodies and chimeric antigen receptor T-cell therapy. However, there have been inevitable setbacks in the clinical application of cancer immunotherapy, including inadequate immune responses due to insufficient delivery of immunostimulants to immune cells and uncontrolled immune system modulation. Rapid advancements and new evidence have suggested that nanomedicine-based immunotherapy may be a viable option for treating breast cancer.


Cancer that begins in the breast is referred to as breast cancer. It may originate in either one or both breasts. It is one of the main causes of cancer-related death among women worldwide. Cancer immunotherapy is a game-changing treatment that improves the ability of the host defense system to spot and eliminate cancer cells with pinpoint accuracy. Cancer immunotherapy, also referred to as immuno-oncology, is a type of treatment option for breast cancer that uses the body's natural defense system to prevent, regulate and eliminate breast cancer. Immunotherapy is used to enhance or alter the functioning of the immune system so that it can locate and destroy cancer cells. Knowing how immunotherapy works and what to anticipate can often offer peace of mind to the patient who can then make informed decisions about care, especially if immunotherapy is part of the treatment plan for a particular patient.

10.
Polymers (Basel) ; 14(14)2022 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-35890680

RESUMO

Diabetes, one of the global metabolic disorders, is often associated with delayed wound healing due to the elevated level of free radicals at the wound site, which hampers skin regeneration. This study aimed at developing a curcumin-loaded self-emulsifying drug delivery system (SEDDS) for diabetic wound healing and skin tissue regeneration. For this purpose, various curcumin-loaded SEDDS formulations were prepared and optimized. Then, the SEDDS formulations were characterized by the emulsion droplet size, surface charge, drug content/entrapment efficiency, drug release, and stability. In vitro, the formulations were assessed for the cellular uptake, cytotoxicity, cell migration, and inhibition of the intracellular ROS production in the NIH3T3 fibroblasts. In vivo, the formulations' wound healing and skin regeneration potential were evaluated on the induced diabetic rats. The results indicated that, after being dispersed in the aqueous medium, the optimized SEDDS formulation was readily emulsified and formed a homogenous dispersion with a droplet size of 37.29 ± 3.47 nm, surface charge of -20.75 ± 0.07 mV, and PDI value of less than 0.3. The drug content in the optimized formulation was found to be 70.51% ± 2.31%, with an encapsulation efficiency of 87.36% ± 0.61%. The SEDDS showed a delayed drug release pattern compared to the pure drug solution, and the drug release rate followed the Fickian diffusion kinetically. In the cell culture, the formulations showed lower cytotoxicity, higher cellular uptake, and increased ROS production inhibition, and promoted the cell migration in the scratch assay compared to the pure drug. The in vivo data indicated that the curcumin-loaded SEDDS-treated diabetic rats had significantly faster-wound healing and re-epithelialization compared with the untreated and pure drug-treated groups. Our findings in this work suggest that the curcumin-loaded SEDDS might have great potential in facilitating diabetic wound healing and skin tissue regeneration.

11.
Gels ; 7(4)2021 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-34842698

RESUMO

Hydrogels being a drug delivery system has great significance particularly for topical application in cutaneous open wound. Its specific physicochemical properties such as non-adhesiveness, moisture retention, exudate absorption, and gas permeability make them ideal as a drug delivery vehicle for wound healing application. Further, curcumin (a natural bioactive) was selected as a therapeutic agent to incorporate into the hydrogel system to design and develop nanogel pharmaceutical products for wound healing. Although, curcumin possesses remarkable anti-inflammatory, antioxidant, and anti-infective activity along with hastening the healing process by acting over the different stages of the wound healing process, but its poor biopharmaceutical (low aqueous solubility and skin penetrability) attributes hamper their therapeutic efficacy for skin applications. The current investigation aimed to develop the curcumin-loaded nanogel system and evaluated to check the improvement in the therapeutic efficacy of curcumin through a nanomedicine-based approach for wound healing activity in Wistar rats. The curcumin was enclosed inside the nanoemulsion system prepared through a high-energy ultrasonic emulsification technique at a minimum concentration of surfactant required to nanoemulsify the curcumin-loaded oil system (Labrafac PG) having droplet size 56.25 ± 0.69 nm with polydispersity index 0.05 ± 0.01 and negatively surface charge with zeta potential -20.26 ± 0.65 mV. It was observed that the impact of Smix (surfactant/co-surfactant mixture) ratio on droplet size of generated nanoemulsion is more pronounced at lower Smix concentration (25%) compared to the higher Smix concentration (30%). The optimized curcumin-loaded nanoemulsion was incorporated into a 0.5% Carbopol® 940 hydrogel system for topical application. The developed curcumin nanoemulgel exhibited thixotropic rheological behavior and a significant (p < 0.05) increase in skin penetrability characteristics compared to curcumin dispersed in conventional hydrogel system. The in vivo wound healing efficacy study and histological examination of healed tissue specimen further signify the role of the nanomedicine-based approach to improve the biopharmaceutical attributes of curcumin.

12.
Adv Drug Deliv Rev ; 178: 113840, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34147533

RESUMO

Tablets are the most widely utilized solid oral dosage forms because of the advantages of self-administration, stability, ease of handling, transportation, and good patient compliance. Over time, extensive advances have been made in tableting technology. This review aims to provide an insight about the advances in tablet excipients, manufacturing, analytical techniques and deployment of Quality by Design (QbD). Various excipients offering novel functionalities such as solubility enhancement, super-disintegration, taste masking and drug release modifications have been developed. Furthermore, co-processed multifunctional ready-to-use excipients, particularly for tablet dosage forms, have benefitted manufacturing with shorter processing times. Advances in granulation methods, including moist, thermal adhesion, steam, melt, freeze, foam, reverse wet and pneumatic dry granulation, have been proposed to improve product and process performance. Furthermore, methods for particle engineering including hot melt extrusion, extrusion-spheronization, injection molding, spray drying / congealing, co-precipitation and nanotechnology-based approaches have been employed to produce robust tablet formulations. A wide range of tableting technologies including rapidly disintegrating, matrix, tablet-in-tablet, tablet-in-capsule, multilayer tablets and multiparticulate systems have been developed to achieve customized formulation performance. In addition to conventional invasive characterization methods, novel techniques based on laser, tomography, fluorescence, spectroscopy and acoustic approaches have been developed to assess the physical-mechanical attributes of tablet formulations in a non- or minimally invasive manner. Conventional UV-Visible spectroscopy method has been improved (e.g. fiber-optic probes and UV imaging-based approaches) to efficiently record the dissolution profile of tablet formulations. Numerous modifications in tableting presses have also been made to aid machine product changeover, cleaning, and enhance efficiency and productivity. Various process analytical technologies have been employed to track the formulation properties and critical process parameters. These advances will contribute to a strategy for robust tablet dosage forms with excellent performance attributes.


Assuntos
Preparações Farmacêuticas/química , Tecnologia Farmacêutica , Administração Oral , Composição de Medicamentos , Humanos , Preparações Farmacêuticas/administração & dosagem
13.
Pharm Dev Technol ; 25(2): 197-205, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31638453

RESUMO

The purpose of this study was to investigate the application of piezoelectric inkjet technology in the preparation of custom-made indomethacin (IMC) films. Indomethacin solutions with and without PVP were printed onto polymeric sheets using a commercial inkjet printer. Drug loading was varied by selecting a machine parameter different dots per inches (DPIs). The printed patches were evaluated for particulate morphologies, drug loading, in vitro release and ex vivo skin permeation and anti-inflammatory effects using hind paw inflammation model. Calculated drug loaded in 2 × 2 cm2 patches of IMC of 96, 300, and 600 DPIs were in the range of 40, 60, and 65 µg, respectively. Patches loaded with IMC alcoholic solution showed crystalline structures observed by scanning electron microscopy and the addition of PVP in solution turned it to amorphous form. The drug release profile showed 60-70% of total drug released in 3 h. Permeation studies showed 40-50% of total drug loaded permeated through rat skin using Franz cells. Patches with higher printing density 600 DPI showed anti-inflammatory effect in hind paw inflammation model studies. This study has shown the potential of personalized medicine in which a calculated amount of drug can be delivered to patients by piezoelectric technology.


Assuntos
Indometacina/química , Animais , Química Farmacêutica/métodos , Sistemas de Liberação de Medicamentos/métodos , Liberação Controlada de Fármacos/efeitos dos fármacos , Excipientes/química , Feminino , Indometacina/farmacologia , Inflamação/tratamento farmacológico , Masculino , Polímeros/química , Medicina de Precisão/métodos , Impressão Tridimensional , Ratos , Pele/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...