Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Omega ; 8(11): 9969-9977, 2023 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-36969461

RESUMO

Methicillin-resistant Staphylococcus aureus (MRSA) causes life-threatening infections. Zinc oxide is well known as an effective antibacterial drug against many bacterial strains. We investigated the performance of zinc oxide nanorods synthesized by Albmiun as a biotemplate as an antibacterial drug in this study; the fabrication of zinc oxide nanorods was synthesized by sol-gel methods. We performed physicochemical characterization of zinc oxide nanorods by physiochemical techniques such as FTIR spectroscopy, X-ray diffraction, and TEM and investigation of their antimicrobial toxicity efficiency by MIC, ATPase activity assay, anti-biofilm activity, and kill time assays, as well as the mecA, mecR1, blaR1, blaZ, and biofilm genes (ica A, ica D, and fnb A) by using a quantitative RT-PCR assay and the penicillin-binding protein 2a (PBP2a) level of MRSA by using a Western blot. The data confirmed the fabrication of rod-shaped zinc oxide nanorods with a diameter in the range of 50 nm, which emphasized the formation of zinc oxide nanoparticles with regular shapes. The results show that zinc oxide nanorods inhibited methicillin-resistant S. aureus effectively. The MIC value was 23 µg/mL. The time kill of ZnO-NRs against MRSA was achieved after 2 h of incubation at 4MIC (92 µg/mL) and after 3 h of incubation at 2MIC (46 µg/mL), respectively. The lowest concentration of zinc oxide nanorods with over 75% biofilm killing in all strains tested was 32 µg/mL. Also, we examined the influence of the zinc oxide nanorods on MRSA by analyzing mecA, mecR1, blaR1, and blaZ by using a quantitative RT-PCR assay. The data obtained revealed that the presence of 2× MIC (46 µg/mL) of ZnO-NRs reduced the transcriptional levels of blaZ, blaR1, mecA, and mecR1 by 3.4-fold, 3.6-fold, 4-fold, and 3.8-fold, respectively. Furthermore, the gene expression of biofilm encoding genes (ica A, ica B, ica D, and fnb A) was tested using quantitative real-time reverse transcriptase-polymerase chain reaction (rt-PCR). The results showed that the presence of 2× MIC (46 µg/mL) of ZnO-NRs reduced the transcriptional levels of ica A, ica B, ica D, and fnb A. Also, the PBP2a level was markedly reduced after treatment with ZnO-NRs.

2.
Int J Biol Macromol ; 235: 123704, 2023 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-36801282

RESUMO

Different physical and chemical techniques could be used to prepare chitosan/Silver nanoparticle (CHS/AgNPs) nanocomposite. The microwave heating reactor was rationally adopted as a benign tool for preparing CHS/AgNPs owing to less energy consumption and shorter time required for completing the nucleation and growth particles. UV-Vis, FTIR, and XRD, provided conclusive evidence of the AgNPs creation, while TEM micrographs elucidated that the size was spherical (20 nm). CHS/AgNPs were embedded in polyethylene oxide (PEO) nanofiber via electrospinning, and their biological properties, cytotoxicity evaluation, antioxidant, and antibacterial activity assays were investigated. The generated nanofibers have mean diameters of 130.9 ± 9.5, 168.7 ± 18.8, and 186.8 ± 8.19 nm for PEO, PEO/ CHS, and PEO/ CHS (AgNPs), respectively. Because of the tiny AgNPs particle size loaded in PEO/CHS (AgNPs) fabricated nanofiber, good antibacterial activity with ZOI against E. coli was 51.2 ± 3.2, and S. aureus was 47.2 ± 2.1 for PEO/ CHS (AgNPs) nanofibers. Non-toxicity was observed against Human Skin Fibroblast and Keratinocytes cell lines (>93.5 %), which justifies its great antibacterial potential to remove or prevent infection in wounds with fewer adverse effects.


Assuntos
Quitosana , Nanopartículas Metálicas , Nanofibras , Humanos , Antioxidantes/farmacologia , Staphylococcus aureus , Quitosana/química , Nanofibras/química , Nanopartículas Metálicas/química , Prata/química , Polietilenoglicóis/química , Escherichia coli , Micro-Ondas , Antibacterianos/farmacologia , Antibacterianos/química , Cicatrização
3.
Molecules ; 27(19)2022 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-36234993

RESUMO

Malachite green (MG) dye is a common environmental pollutant that threatens human health and the integrity of the Earth's ecosystem. The aim of this study was to investigate the potential biodegradation of MG dye by actinomycetes species isolated from planted soil near an industrial water effluent in Cairo, Egypt. The Streptomyces isolate St 45 was selected according to its high efficiency for laccase production. It was identified as S. exfoliatus based on phenotype and 16S rRNA molecular analysis and was deposited in the NCBI GenBank with the gene accession number OL720220. Its growth kinetics were studied during an incubation time of 144 h, during which the growth rate was 0.4232 (µ/h), the duplication time (td) was 1.64 d, and multiplication rate (MR) was 0.61 h, with an MG decolorization value of 96% after 120 h of incubation at 25 °C. Eleven physical and nutritional factors (mannitol, frying oil waste, MgSO4, NH4NO3, NH4Cl, dye concentration, pH, agitation, temperature, inoculum size, and incubation time) were screened for significance in the biodegradation of MG by S. exfoliatus using PBD. Out of the eleven factors screened in PBD, five (dye concentration, frying oil waste, MgSO4, inoculum size, and pH) were shown to be significant in the decolorization process. Central composite design (CCD) was applied to optimize the biodegradation of MG. Maximum decolorization was attained using the following optimal conditions: food oil waste, 7.5 mL/L; MgSO4, 0.35 g/L; dye concentration, 0.04 g/L; pH, 4.0; and inoculum size, 12.5%. The products from the degradation of MG by S. exfoliatus were characterized using high-performance liquid chromatography (HPLC) and gas chromatography-mass spectrometry (GC-MS). The results revealed the presence of several compounds, including leuco-malachite green, di(tert-butyl)(2-phenylethoxy) silane, 1,3-benzenedicarboxylic acid, bis(2-ethylhexyl) ester, 1,4-benzenedicarboxylic acid, bis(2-ethylhexyl) ester, 1,2-benzenedicarboxylic acid, di-n-octyl phthalate, and 1,2-benzenedicarboxylic acid, dioctyl ester. Moreover, the phytotoxicity, microbial toxicity, and cytotoxicity tests confirmed that the byproducts of MG degradation were not toxic to plants, microbes, or human cells. The results of this work implicate S. exfoliatus as a novel strain for MG biodegradation in different environments.


Assuntos
Poluentes Ambientais , Streptomyces , Biodegradação Ambiental , Corantes/química , Ecossistema , Ésteres , Humanos , Lacase , Manitol , RNA Ribossômico 16S/genética , Corantes de Rosanilina , Silanos , Solo , Streptomyces/genética , Streptomyces/metabolismo , Água
4.
Biomed Res Int ; 2022: 7380147, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35535039

RESUMO

Staphylococcus aureus is a major human pathogen that is sometimes resistant to vancomycin. In this study, the prevalence of vancomycin-resistant Staphylococcus aureus (VRSA) was studied. 100 isolates of S. aureus were identified based on biochemical and molecular evidence. The antibiotic susceptibility of the studied isolates was tested against 13 antibiotics by the disc diffusion method that showed 24 vancomycin-resistant isolates. The minimum inhibitory concentrations (MICs) were estimated by the agar dilution method to determine vancomycin intermediate-resistant S. aureus (VISA) and VRSA. The resistance gene cluster (vanA, vanR, vanH, and vanY) was amplified by PCR and then sequenced. Amplification of vanA and vanR genes showed that they are present in 21.4% and 14.3% of VRSA isolates, respectively, whereas none of the studied genes has been detected in VISA strains. A significant antimicrobial effect toward VRSA isolates using silver nanoparticles (AgNPs) synthesized from S. aureus and rosemary leaves was recorded. This study confirmed the existence of VRSA strains in Egypt. Furthermore, the use of silver nanoparticles inhibits these vancomycin-resistant S. aureus strains in vitro.


Assuntos
Nanopartículas Metálicas , Staphylococcus aureus Resistente à Meticilina , Infecções Estafilocócicas , Antibacterianos/farmacologia , Egito , Humanos , Testes de Sensibilidade Microbiana , Prata/farmacologia , Infecções Estafilocócicas/epidemiologia , Staphylococcus aureus , Vancomicina/farmacologia , Resistência a Vancomicina/genética
5.
Antibiotics (Basel) ; 11(3)2022 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-35326790

RESUMO

The isolation and assessment of the active constituents in polar and non-polar crude extracts of Saussurea costus roots as antifungal agents, against Candida albicans and non-C. albicans (NAC) species, was the aim of this current investigation. The SEM "Scanning electron microscopy" imaging provided potential action modes of n-hexane extract (nhhE) toward Candida spp., whereas the TLC-DB "Thin layer chromatography-direct bioautography" was employed for detecting the anticandidal compounds. nhhE had the greatest biocidal activity against all strains and clinical isolates of Candida spp. with maximum zones of inhibition. SEM revealed the occurrence of irregular, dense inclusions of C. albicans cell walls after treatment with nhhE for 12 h. Complete morphological distortions with lysed membranes and deterioration signs appeared in most treated cells of C. parapsilosis. The most effectual compound with anticandidal activity was isolated using TLC-BD and identified as sesquiterpene by GC/MS analysis. The infra-red analysis revealed the presence of lactone ring stretching vibrations at 1766.72 cm-1. The anticandidal activity of nhhE of S. costus roots was confirmed from the results, and the treated cotton fabrics with nhhE of S. costus possessed observable activity against C. albicans. Data could recommend the practical usage of S. costus extracts, particularly nhhE, as influential natural bioactive sources for combating pathogenic Candida spp.

6.
Nat Commun ; 10(1): 261, 2019 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-30651563

RESUMO

Bacterial growth and cell division requires precise spatiotemporal regulation of the synthesis and remodelling of the peptidoglycan layer that surrounds the cytoplasmic membrane. GpsB is a cytosolic protein that affects cell wall synthesis by binding cytoplasmic mini-domains of peptidoglycan synthases to ensure their correct subcellular localisation. Here, we describe critical structural features for the interaction of GpsB with peptidoglycan synthases from three bacterial species (Bacillus subtilis, Listeria monocytogenes and Streptococcus pneumoniae) and suggest their importance for cell wall growth and viability in L. monocytogenes and S. pneumoniae. We use these structural motifs to identify novel partners of GpsB in B. subtilis and extend the members of the GpsB interactome in all three bacterial species. Our results support that GpsB functions as an adaptor protein that mediates the interaction between membrane proteins, scaffolding proteins, signalling proteins and enzymes to generate larger protein complexes at specific sites in a bacterial cell cycle-dependent manner.


Assuntos
Bacillus subtilis/metabolismo , Proteínas de Bactérias/metabolismo , Proteínas de Ciclo Celular/metabolismo , Parede Celular/metabolismo , Listeria monocytogenes/metabolismo , Proteínas de Ligação às Penicilinas/metabolismo , Streptococcus pneumoniae/metabolismo , Fatores de Virulência/metabolismo , Motivos de Aminoácidos , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/isolamento & purificação , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/isolamento & purificação , Divisão Celular , Cristalografia por Raios X , Citosol/metabolismo , Proteínas de Membrana/metabolismo , Mutagênese , Proteínas de Ligação às Penicilinas/química , Proteínas de Ligação às Penicilinas/genética , Proteínas de Ligação às Penicilinas/isolamento & purificação , Peptidoglicano/biossíntese , Domínios e Motivos de Interação entre Proteínas , Mapas de Interação de Proteínas , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Fatores de Virulência/química , Fatores de Virulência/genética , Fatores de Virulência/isolamento & purificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...