Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 23(9)2023 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-37177423

RESUMO

Medical time series are sequential data collected over time that measures health-related signals, such as electroencephalography (EEG), electrocardiography (ECG), and intensive care unit (ICU) readings. Analyzing medical time series and identifying the latent patterns and trends that lead to uncovering highly valuable insights for enhancing diagnosis, treatment, risk assessment, and disease progression. However, data mining in medical time series is heavily limited by the sample annotation which is time-consuming and labor-intensive, and expert-depending. To mitigate this challenge, the emerging self-supervised contrastive learning, which has shown great success since 2020, is a promising solution. Contrastive learning aims to learn representative embeddings by contrasting positive and negative samples without the requirement for explicit labels. Here, we conducted a systematic review of how contrastive learning alleviates the label scarcity in medical time series based on PRISMA standards. We searched the studies in five scientific databases (IEEE, ACM, Scopus, Google Scholar, and PubMed) and retrieved 1908 papers based on the inclusion criteria. After applying excluding criteria, and screening at title, abstract, and full text levels, we carefully reviewed 43 papers in this area. Specifically, this paper outlines the pipeline of contrastive learning, including pre-training, fine-tuning, and testing. We provide a comprehensive summary of the various augmentations applied to medical time series data, the architectures of pre-training encoders, the types of fine-tuning classifiers and clusters, and the popular contrastive loss functions. Moreover, we present an overview of the different data types used in medical time series, highlight the medical applications of interest, and provide a comprehensive table of 51 public datasets that have been utilized in this field. In addition, this paper will provide a discussion on the promising future scopes such as providing guidance for effective augmentation design, developing a unified framework for analyzing hierarchical time series, and investigating methods for processing multimodal data. Despite being in its early stages, self-supervised contrastive learning has shown great potential in overcoming the need for expert-created annotations in the research of medical time series.


Assuntos
Aprendizagem , Fatores de Tempo , Mineração de Dados , Bases de Dados Factuais
2.
Protein Sci ; 31(11): e4453, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36305769

RESUMO

Protein phosphorylation acts as an essential on/off switch in many cellular signaling pathways. This has led to ongoing interest in targeting kinases for therapeutic intervention. Computer-aided drug discovery has been proven a useful and cost-effective approach for facilitating prioritization and enrichment of screening libraries, but limited effort has been devoted providing insights on what makes a potent kinase inhibitor. To fill this gap, here we developed kinCSM, an integrative computational tool capable of accurately identifying potent cyclin-dependent kinase 2 (CDK2) inhibitors, quantitatively predicting CDK2 ligand-kinase inhibition constants (pKi ) and classifying different types of inhibitors based on their favorable binding modes. kinCSM predictive models were built using supervised learning and leveraged the concept of graph-based signatures to capture both physicochemical properties and geometry properties of small molecules. CDK2 inhibitors were accurately identified with Matthew's Correlation Coefficients (MCC) of up to 0.74, and inhibition constants predicted with Pearson's correlation of up to 0.76, both with consistent performances of 0.66 and 0.68 on a nonredundant blind test, respectively. kinCSM was also able to identify the potential type of inhibition for a given molecule, achieving MCC of up to 0.80 on cross-validation and 0.73 on the blind test. Analyzing the molecular composition of revealed enriched chemical fragments in CDK2 inhibitors and different types of inhibitors, which provides insights into the molecular mechanisms behind ligand-kinase interactions. kinCSM will be an invaluable tool to guide future kinase drug discovery. To aid the fast and accurate screening of CDK2 inhibitors, kinCSM is freely available at https://biosig.lab.uq.edu.au/kin_csm/.


Assuntos
Antineoplásicos , Inibidores de Proteínas Quinases , Quinase 2 Dependente de Ciclina/química , Ligantes , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/química , Descoberta de Drogas , Antineoplásicos/química
3.
Mol Ther Nucleic Acids ; 26: 536-546, 2021 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-34631283

RESUMO

The emergence of high-throughput sequencing techniques has revealed a primary role of microRNAs (miRNAs) in a wide range of diseases, including cancers and neurodegenerative disorders. Understanding novel relationships between miRNAs and diseases can potentially unveil complex pathogenesis mechanisms, leading to effective diagnosis and treatment. The investigation of novel miRNA-disease associations, however, is currently costly and time consuming. Over the years, several computational models have been proposed to prioritize potential miRNA-disease associations, but with limited usability or predictive capability. In order to fill this gap, we introduce TSMDA, a novel machine-learning method that leverages target and symptom information and negative sample selection to predict miRNA-disease association. TSMDA significantly outperforms similar methods, achieving an area under the receiver operating characteristic (ROC) curve (AUC) of 0.989 and 0.982 under 5-fold cross-validation and blind test, respectively. We also demonstrate the capability of the method to uncover potential miRNA-disease associations in breast, prostate, and lung cancers, as case studies. We believe TSMDA will be an invaluable tool for the community to explore and prioritize potentially new miRNA-disease associations for further experimental characterization. The method was made available as a freely accessible and user-friendly web interface at http://biosig.unimelb.edu.au/tsmda/.

4.
Comput Biol Med ; 135: 104596, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34247133

RESUMO

There has been a substantial amount of research involving computer methods and technology for the detection and recognition of diabetic foot ulcers (DFUs), but there is a lack of systematic comparisons of state-of-the-art deep learning object detection frameworks applied to this problem. DFUC2020 provided participants with a comprehensive dataset consisting of 2,000 images for training and 2,000 images for testing. This paper summarizes the results of DFUC2020 by comparing the deep learning-based algorithms proposed by the winning teams: Faster R-CNN, three variants of Faster R-CNN and an ensemble method; YOLOv3; YOLOv5; EfficientDet; and a new Cascade Attention Network. For each deep learning method, we provide a detailed description of model architecture, parameter settings for training and additional stages including pre-processing, data augmentation and post-processing. We provide a comprehensive evaluation for each method. All the methods required a data augmentation stage to increase the number of images available for training and a post-processing stage to remove false positives. The best performance was obtained from Deformable Convolution, a variant of Faster R-CNN, with a mean average precision (mAP) of 0.6940 and an F1-Score of 0.7434. Finally, we demonstrate that the ensemble method based on different deep learning methods can enhance the F1-Score but not the mAP.


Assuntos
Aprendizado Profundo , Diabetes Mellitus , Pé Diabético , Algoritmos , Pé Diabético/diagnóstico , Humanos , Projetos de Pesquisa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...