Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Microbiol ; 11: 543260, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33381087

RESUMO

The Hartousov mofette system is a natural CO2 degassing site in the central Cheb Basin (Eger Rift, Central Europe). In early 2016 a 108 m deep core was obtained from this system to investigate the impact of ascending mantle-derived CO2 on indigenous deep microbial communities and their surrounding life habitat. During drilling, a CO2 blow out occurred at a depth of 78.5 meter below surface (mbs) suggesting a CO2 reservoir associated with a deep low-permeable CO2-saturated saline aquifer at the transition from Early Miocene terrestrial to lacustrine sediments. Past microbial communities were investigated by hopanoids and glycerol dialkyl glycerol tetraethers (GDGTs) reflecting the environmental conditions during the time of deposition rather than showing a signal of the current deep biosphere. The composition and distribution of the deep microbial community potentially stimulated by the upward migration of CO2 starting during Mid Pleistocene time was investigated by intact polar lipids (IPLs), quantitative polymerase chain reaction (qPCR), and deoxyribonucleic acid (DNA) analysis. The deep biosphere is characterized by microorganisms that are linked to the distribution and migration of the ascending CO2-saturated groundwater and the availability of organic matter instead of being linked to single lithological units of the investigated rock profile. Our findings revealed high relative abundances of common soil and water bacteria, in particular the facultative, anaerobic and potential iron-oxidizing Acidovorax and other members of the family Comamonadaceae across the whole recovered core. The results also highlighted the frequent detection of the putative sulfate-oxidizing and CO2-fixating genus Sulfuricurvum at certain depths. A set of new IPLs are suggested to be indicative for microorganisms associated to CO2 accumulation in the mofette system.

2.
Astrobiology ; 19(2): 145-157, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30742496

RESUMO

BIOMEX (BIOlogy and Mars EXperiment) is an ESA/Roscosmos space exposure experiment housed within the exposure facility EXPOSE-R2 outside the Zvezda module on the International Space Station (ISS). The design of the multiuser facility supports-among others-the BIOMEX investigations into the stability and level of degradation of space-exposed biosignatures such as pigments, secondary metabolites, and cell surfaces in contact with a terrestrial and Mars analog mineral environment. In parallel, analysis on the viability of the investigated organisms has provided relevant data for evaluation of the habitability of Mars, for the limits of life, and for the likelihood of an interplanetary transfer of life (theory of lithopanspermia). In this project, lichens, archaea, bacteria, cyanobacteria, snow/permafrost algae, meristematic black fungi, and bryophytes from alpine and polar habitats were embedded, grown, and cultured on a mixture of martian and lunar regolith analogs or other terrestrial minerals. The organisms and regolith analogs and terrestrial mineral mixtures were then exposed to space and to simulated Mars-like conditions by way of the EXPOSE-R2 facility. In this special issue, we present the first set of data obtained in reference to our investigation into the habitability of Mars and limits of life. This project was initiated and implemented by the BIOMEX group, an international and interdisciplinary consortium of 30 institutes in 12 countries on 3 continents. Preflight tests for sample selection, results from ground-based simulation experiments, and the space experiments themselves are presented and include a complete overview of the scientific processes required for this space experiment and postflight analysis. The presented BIOMEX concept could be scaled up to future exposure experiments on the Moon and will serve as a pretest in low Earth orbit.


Assuntos
Cianobactérias/fisiologia , Exobiologia , Líquens/fisiologia , Marte , Biofilmes , Cianobactérias/efeitos da radiação , Deinococcus/fisiologia , Deinococcus/efeitos da radiação , Meio Ambiente Extraterreno , Líquens/efeitos da radiação , Marchantia/fisiologia , Marchantia/efeitos da radiação , Methanosarcina/fisiologia , Methanosarcina/efeitos da radiação , Minerais , Raios Ultravioleta
3.
Astrobiology ; 19(2): 197-208, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30742498

RESUMO

Numerous preflight investigations were necessary prior to the exposure experiment BIOMEX on the International Space Station to test the basic potential of selected microorganisms to resist or even to be active under Mars-like conditions. In this study, methanogenic archaea, which are anaerobic chemolithotrophic microorganisms whose lifestyle would allow metabolism under the conditions on early and recent Mars, were analyzed. Some strains from Siberian permafrost environments have shown a particular resistance. In this investigation, we analyzed the response of three permafrost strains (Methanosarcina soligelidi SMA-21, Candidatus Methanosarcina SMA-17, Candidatus Methanobacterium SMA-27) and two related strains from non-permafrost environments (Methanosarcina mazei, Methanosarcina barkeri) to desiccation conditions (-80°C for 315 days, martian regolith analog simulants S-MRS and P-MRS, a 128-day period of simulated Mars-like atmosphere). Exposure of the different methanogenic strains to increasing concentrations of magnesium perchlorate allowed for the study of their metabolic shutdown in a Mars-relevant perchlorate environment. Survival and metabolic recovery were analyzed by quantitative PCR, gas chromatography, and a new DNA-extraction method from viable cells embedded in S-MRS and P-MRS. All strains survived the two Mars-like desiccating scenarios and recovered to different extents. The permafrost strain SMA-27 showed an increased methanogenic activity by at least 10-fold after deep-freezing conditions. The methanogenic rates of all strains did not decrease significantly after 128 days S-MRS exposure, except for SMA-27, which decreased 10-fold. The activity of strains SMA-17 and SMA-27 decreased after 16 and 60 days P-MRS exposure. Non-permafrost strains showed constant survival and methane production when exposed to both desiccating scenarios. All strains showed unaltered methane production when exposed to the perchlorate concentration reported at the Phoenix landing site (2.4 mM) or even higher concentrations. We conclude that methanogens from (non-)permafrost environments are suitable candidates for potential life in the martian subsurface and therefore are worthy of study after space exposure experiments that approach Mars-like surface conditions.


Assuntos
Exobiologia , Meio Ambiente Extraterreno , Marte , Methanosarcina/metabolismo , Dessecação , Congelamento , Compostos de Magnésio , Methanosarcina/citologia , Percloratos
4.
Front Microbiol ; 9: 2787, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30524401

RESUMO

The Cheb Basin (CZ) is a shallow Neogene intracontinental basin filled with fluvial and lacustrine sediments that is located in the western part of the Eger Rift. The basin is situated in a seismically active area and is characterized by diffuse degassing of mantle-derived CO2 in mofette fields. The Hartousov mofette field shows a daily CO2 flux of 23-97 tons of CO2 released over an area of 0.35 km2 and a soil gas concentration of up to 100% CO2. The present study aims to explore the geo-bio interactions provoked by the influence of elevated CO2 concentrations on the geochemistry and microbial community of soils and sediments. To sample the strata, two 3-m cores were recovered. One core stems from the center of the degassing structure, whereas the other core was taken 8 m from the ENE and served as an undisturbed reference site. The sites were compared regarding their geochemical features, microbial abundances, and microbial community structures. The mofette site is characterized by a low pH and high TOC/sulfate contents. Striking differences in the microbial community highlight the substantial impact of elevated CO2 concentrations and their associated side effects on microbial processes. The abundance of microbes did not show a typical decrease with depth, indicating that the uprising CO2-rich fluid provides sufficient substrate for chemolithoautotrophic anaerobic microorganisms. Illumina MiSeq sequencing of the 16S rRNA genes and multivariate statistics reveals that the pH strongly influences microbial composition and explains around 38.7% of the variance at the mofette site and 22.4% of the variance between the mofette site and the undisturbed reference site. Accordingly, acidophilic microorganisms (e.g., OTUs assigned to Acidobacteriaceae and Acidithiobacillus) displayed a much higher relative abundance at the mofette site than at the reference site. The microbial community at the mofette site is characterized by a high relative abundance of methanogens and taxa involved in sulfur cycling. The present study provides intriguing insights into microbial life and geo-bio interactions in an active seismic region dominated by emanating mantle-derived CO2-rich fluids, and thereby builds the basis for further studies, e.g., focusing on the functional repertoire of the communities. However, it remains open if the observed patterns can be generalized for different time-points or sites.

5.
Front Microbiol ; 9: 2082, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30294305

RESUMO

More than 41% of the Earth's land area is covered by permanent or seasonally arid dryland ecosystems. Global development and human activity have led to an increase in aridity, resulting in ecosystem degradation and desertification around the world. The objective of the present work was to investigate and compare the microbial community structure and geochemical characteristics of two geographically distinct saline pan sediments in the Kalahari Desert of southern Africa. Our data suggest that these microbial communities have been shaped by geochemical drivers, including water content, salinity, and the supply of organic matter. Using Illumina 16S rRNA gene sequencing, this study provides new insights into the diversity of bacteria and archaea in semi-arid, saline, and low-carbon environments. Many of the observed taxa are halophilic and adapted to water-limiting conditions. The analysis reveals a high relative abundance of halophilic archaea (primarily Halobacteria), and the bacterial diversity is marked by an abundance of Gemmatimonadetes and spore-forming Firmicutes. In the deeper, anoxic layers, candidate division MSBL1, and acetogenic bacteria (Acetothermia) are abundant. Together, the taxonomic information and geochemical data suggest that acetogenesis could be a prevalent form of metabolism in the deep layers of a saline pan.

6.
Environ Microbiol ; 20(12): 4297-4313, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-29968357

RESUMO

Ferruginous (Fe-rich, SO4 -poor) conditions are generally restricted to freshwater sediments on Earth today, but were likely widespread during the Archean and Proterozoic Eons. Lake Towuti, Indonesia, is a large ferruginous lake that likely hosts geochemical processes analogous to those that operated in the ferruginous Archean ocean. The metabolic potential of microbial communities and related biogeochemical cycling under such conditions remain largely unknown. We combined geochemical measurements (pore water chemistry, sulfate reduction rates) with metagenomics to link metabolic potential with geochemical processes in the upper 50 cm of sediment. Microbial diversity and quantities of genes for dissimilatory sulfate reduction (dsrAB) and methanogenesis (mcrA) decrease with increasing depth, as do rates of potential sulfate reduction. The presence of taxa affiliated with known iron- and sulfate-reducers implies potential use of ferric iron and sulfate as electron acceptors. Pore-water concentrations of acetate imply active production through fermentation. Fermentation likely provides substrates for respiration with iron and sulfate as electron donors and for methanogens that were detected throughout the core. The presence of ANME-1 16S and mcrA genes suggests potential for anaerobic methane oxidation. Overall our data suggest that microbial community metabolism in anoxic ferruginous sediments support coupled Fe, S and C biogeochemical cycling.


Assuntos
Sedimentos Geológicos/química , Ferro/química , Lagos , Microbiota , Regulação Bacteriana da Expressão Gênica , Sedimentos Geológicos/microbiologia , Ferro/metabolismo , Metagenômica , Metano/metabolismo , Oxirredução , RNA Ribossômico 16S/genética , Sulfatos/metabolismo
7.
Front Microbiol ; 8: 1440, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28798742

RESUMO

Extracellular DNA is ubiquitous in soil and sediment and constitutes a dominant fraction of environmental DNA in aquatic systems. In theory, extracellular DNA is composed of genomic elements persisting at different degrees of preservation produced by processes occurring on land, in the water column and sediment. Extracellular DNA can be taken up as a nutrient source, excreted or degraded by microorganisms, or adsorbed onto mineral matrices, thus potentially preserving information from past environments. To test whether extracellular DNA records lacustrine conditions, we sequentially extracted extracellular and intracellular DNA from anoxic sediments of ferruginous Lake Towuti, Indonesia. We applied 16S rRNA gene Illumina sequencing on both fractions to discriminate exogenous from endogenous sources of extracellular DNA in the sediment. Environmental sequences exclusively found as extracellular DNA in the sediment originated from multiple sources. For instance, Actinobacteria, Verrucomicrobia, and Acidobacteria derived from soils in the catchment. Limited primary productivity in the water column resulted in few sequences of Cyanobacteria in the oxic photic zone, whereas stratification of the water body mainly led to secondary production by aerobic and anaerobic heterotrophs. Chloroflexi and Planctomycetes, the main degraders of sinking organic matter and planktonic sequences at the water-sediment interface, were preferentially preserved during the initial phase of burial. To trace endogenous sources of extracellular DNA, we used relative abundances of taxa in the intracellular DNA to define which microbial populations grow, decline or persist at low density with sediment depth. Cell lysis became an important additional source of extracellular DNA, gradually covering previous genetic assemblages as other microbial genera became more abundant with depth. The use of extracellular DNA as nutrient by active microorganisms led to selective removal of sequences with lowest GC contents. We conclude that extracellular DNA preserved in shallow lacustrine sediments reflects the initial environmental context, but is gradually modified and thereby shifts from its stratigraphic context. Discrimination of exogenous and endogenous sources of extracellular DNA allows simultaneously addressing in-lake and post-depositional processes. In deeper sediments, the accumulation of resting stages and sequences from cell lysis would require stringent extraction and specific primers if ancient DNA is targeted.

8.
Front Microbiol ; 8: 2446, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29321765

RESUMO

The Cheb Basin (NW Bohemia, Czech Republic) is a shallow, neogene intracontinental basin. It is a non-volcanic region which features frequent earthquake swarms and large-scale diffuse degassing of mantle-derived CO2 at the surface that occurs in the form of CO2-rich mineral springs and wet and dry mofettes. So far, the influence of CO2 degassing onto the microbial communities has been studied for soil environments, but not for aquatic systems. We hypothesized, that deep-trenching CO2 conduits interconnect the subsurface with the surface. This admixture of deep thermal fluids should be reflected in geochemical parameters and in the microbial community compositions. In the present study four mineral water springs and two wet mofettes were investigated through an interdisciplinary survey. The waters were acidic and differed in terms of organic carbon and anion/cation concentrations. Element geochemical and isotope analyses of fluid components were used to verify the origin of the fluids. Prokaryotic communities were characterized through quantitative PCR and Illumina 16S rRNA gene sequencing. Putative chemolithotrophic, anaerobic and microaerophilic organisms connected to sulfur (e.g., Sulfuricurvum, Sulfurimonas) and iron (e.g., Gallionella, Sideroxydans) cycling shaped the core community. Additionally, CO2-influenced waters form an ecosystem containing many taxa that are usually found in marine or terrestrial subsurface ecosystems. Multivariate statistics highlighted the influence of environmental parameters such as pH, Fe2+ concentration and conductivity on species distribution. The hydrochemical and microbiological survey introduces a new perspective on mofettes. Our results support that mofettes are either analogs or rather windows into the deep biosphere and furthermore enable access to deeply buried paleo-sediments.

9.
Front Microbiol ; 7: 1007, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27446046

RESUMO

Lake Towuti is a tectonic basin, surrounded by ultramafic rocks. Lateritic soils form through weathering and deliver abundant iron (oxy)hydroxides but very little sulfate to the lake and its sediment. To characterize the sediment biogeochemistry, we collected cores at three sites with increasing water depth and decreasing bottom water oxygen concentrations. Microbial cell densities were highest at the shallow site-a feature we attribute to the availability of labile organic matter (OM) and the higher abundance of electron acceptors due to oxic bottom water conditions. At the two other sites, OM degradation and reduction processes below the oxycline led to partial electron acceptor depletion. Genetic information preserved in the sediment as extracellular DNA (eDNA) provided information on aerobic and anaerobic heterotrophs related to Nitrospirae, Chloroflexi, and Thermoplasmatales. These taxa apparently played a significant role in the degradation of sinking OM. However, eDNA concentrations rapidly decreased with core depth. Despite very low sulfate concentrations, sulfate-reducing bacteria were present and viable in sediments at all three sites, as confirmed by measurement of potential sulfate reduction rates. Microbial community fingerprinting supported the presence of taxa related to Deltaproteobacteria and Firmicutes with demonstrated capacity for iron and sulfate reduction. Concomitantly, sequences of Ruminococcaceae, Clostridiales, and Methanomicrobiales indicated potential for fermentative hydrogen and methane production. Such first insights into ferruginous sediments showed that microbial populations perform successive metabolisms related to sulfur, iron, and methane. In theory, iron reduction could reoxidize reduced sulfur compounds and desorb OM from iron minerals to allow remineralization to methane. Overall, we found that biogeochemical processes in the sediments can be linked to redox differences in the bottom waters of the three sites, like oxidant concentrations and the supply of labile OM. At the scale of the lacustrine record, our geomicrobiological study should provide a means to link the extant subsurface biosphere to past environments.

10.
FEMS Microbiol Ecol ; 92(8)2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27230921

RESUMO

Large amounts of organic carbon are stored in Arctic permafrost environments, and microbial activity can potentially mineralize this carbon into methane, a potent greenhouse gas. In this study, we assessed the methane budget, the bacterial methane oxidation (MOX) and the underlying environmental controls of arctic lake systems, which represent substantial sources of methane. Five lake systems located on Samoylov Island (Lena Delta, Siberia) and the connected river sites were analyzed using radiotracers to estimate the MOX rates, and molecular biology methods to characterize the abundance and the community composition of methane-oxidizing bacteria (MOB). In contrast to the river, the lake systems had high variation in the methane concentrations, the abundance and composition of the MOB communities, and consequently, the MOX rates. The highest methane concentrations and the highest MOX rates were detected in the lake outlets and in a lake complex in a flood plain area. Though, in all aquatic systems, we detected both, Type I and II MOB, in lake systems, we observed a higher diversity including MOB, typical of the soil environments. The inoculation of soil MOB into the aquatic systems, resulting from permafrost thawing, might be an additional factor controlling the MOB community composition and potentially methanotrophic capacity.


Assuntos
Mudança Climática , Lagos/análise , Metano/metabolismo , Methylococcaceae/metabolismo , Oxigênio/análise , Rios/química , Regiões Árticas , Sequência de Bases , Carbono/metabolismo , DNA Bacteriano/genética , Ecossistema , Efeito Estufa , Lagos/microbiologia , Metano/análise , Methylococcaceae/genética , Oxirredução , Rios/microbiologia , Análise de Sequência de DNA , Sibéria , Solo , Microbiologia do Solo
11.
J Microbiol Methods ; 121: 11-23, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26656002

RESUMO

In clinical trials investigating human health and in the analysis of microbial communities in cultures and natural environments, it is a substantial challenge to differentiate between living, potentially active communities and dead cells. The DNA-intercalating dye propidium monoazide (PMA) enables the selective masking of DNA from dead, membrane-compromised cells immediately before DNA extraction. In the present study, we evaluated for the first time a PMA treatment for methanogenic archaea in cultures and particle-rich environmental samples. Using microscopic analyses, we confirmed the applicability of the LIVE/DEAD(®) BacLight™ kit to methanogenic archaea and demonstrated the maintenance of intact cell membranes of methanogens in the presence of PMA. Although strain-specific differences in the efficiency of PMA treatment to methanogenic archaea were observed, we developed an optimal procedure using 130 µM PMA and 5min of photo-activation with blue LED light. The results showed that the effectiveness of the PMA treatment strongly depends on the texture of the sediment/soil: silt and clay-rich sediments represent a challenge at all concentrations, whereas successful suppression of DNA from dead cells with compromised membranes was possible for low particle loads of sandy soil (total suspended solids (TSS)≤200 mg mL(-1)). Conclusively, we present two strategies to overcome the problem of insufficient light activation of PMA caused by the turbidity effect (shielding) in particle-rich environmental samples by (i) dilution of the particle-rich sample and (ii) detachment of the cells and the free DNA from the sediment prior to a PMA treatment. Both strategies promise to be usable options for distinguishing living cells and free DNA in complex environmental samples.


Assuntos
Azidas/farmacologia , Euryarchaeota/classificação , Euryarchaeota/efeitos dos fármacos , Propídio/análogos & derivados , Azidas/química , Técnicas Bacteriológicas/métodos , DNA Bacteriano/análise , DNA Bacteriano/química , DNA Bacteriano/isolamento & purificação , Microbiologia Ambiental , Euryarchaeota/genética , Substâncias Húmicas/análise , Substâncias Intercalantes/química , Viabilidade Microbiana , Microscopia de Fluorescência/métodos , Reação em Cadeia da Polimerase/métodos , Propídio/química , Propídio/farmacologia , Solo/química , Microbiologia do Solo
12.
Genome Announc ; 3(2)2015 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-25908125

RESUMO

Here, we announce the genome sequence of Methanosarcina soligelidi SMA-21, an anaerobic methanogenic archaeon that was previously isolated from Siberian permafrost-affected soil. The sequencing of strain SMA-21 yielded a 4.06-Mb genome with 41.5% G+C content, containing a total of 2,647 open reading frames.

13.
Front Microbiol ; 6: 210, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25852668

RESUMO

Methanogenic archaea have been studied as model organisms for possible life on Mars for several reasons: they can grow lithoautotrophically by using hydrogen and carbon dioxide as energy and carbon sources, respectively; they are anaerobes; and they evolved at a time when conditions on early Earth are believed to have looked similar to those of early Mars. As Mars is currently dry and cold and as water might be available only at certain time intervals, any organism living on this planet would need to cope with desiccation. On Earth there are several regions with low water availability as well, e.g., permafrost environments, desert soils, and salt pans. Here, we present the results of a set of experiments investigating the influence of different Martian regolith analogs (MRAs) on the metabolic activity and growth of three methanogenic strains exposed to culture conditions as well as long-term desiccation. In most cases, concentrations below 1 wt% of regolith in the media resulted in an increase of methane production rates, whereas higher concentrations decreased the rates, thus prolonging the lag phase. Further experiments showed that methanogenic archaea are capable of producing methane when incubated on a water-saturated sedimentary matrix of regolith lacking nutrients. Survival of methanogens under these conditions was analyzed with a 400 day desiccation experiment in the presence of regolith analogs. All tested strains of methanogens survived the desiccation period as it was determined through reincubation on fresh medium and via qPCR following propidium monoazide treatment to identify viable cells. The survival of long-term desiccation and the ability of active metabolism on water-saturated MRAs strengthens the possibility of methanogenic archaea or physiologically similar organisms to exist in environmental niches on Mars. The best results were achieved in presence of a phyllosilicate, which provides insights of possible positive effects in habitats on Earth as well.

14.
Int J Syst Evol Microbiol ; 64(Pt 10): 3478-3484, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25052394

RESUMO

A novel methanogenic archaeon, strain MC-15(T), was isolated from a floating biofilm on a sulphurous subsurface lake in Movile Cave (Mangalia, Romania). Cells were non-motile sarcina-like cocci with a diameter of 2-4 µm, occurring in aggregates. The strain was able to grow autotrophically on H2/CO2. Additionally, acetate, methanol, monomethylamine, dimethylamine and trimethylamine were utilized, but not formate or dimethyl sulfide. Trypticase peptone and yeast extract were not required for growth. Optimal growth was observed at 33 °C, pH 6.5 and a salt concentration of 0.05 M NaCl. The predominant membrane lipids of MC-15(T) were archaeol and hydroxyarchaeol phosphatidylethanolamine, phosphatidylglycerol, and phosphatidylinositol as well as hydroxyarchaeol phosphatidylserine and archaeol glycosaminyl phosphatidylinositol. The closely related species, Methanosarcina vacuolata and Methanosarcina horonobensis, had a similar composition of major membrane lipids to strain MC-15(T). The 16S rRNA gene sequence of strain MC-15(T) was similar to those of Methanosarcina vacuolata DSM 1232(T) (sequence similarity 99.3%), Methanosarcina horonobensis HB-1(T) (98.8%), Methanosarcina barkeri DSM 800(T) (98.7%) and Methanosarcina siciliae T4/M(T) (98.4%). DNA-DNA hybridization revealed 43.3% relatedness between strain MC-15(T) and Methanosarcina vacuolata DSM 1232(T). The G+C content of the genomic DNA was 39.0 mol%. Based on physiological, phenotypic and genotypic differences, strain MC-15(T) represents a novel species of the genus Methanosarcina, for which the name Methanosarcina spelaei sp. nov. is proposed. The type strain is MC-15(T) ( = DSM 26047(T) = JCM 18469(T)).


Assuntos
Biofilmes , Methanosarcina/classificação , Filogenia , Microbiologia da Água , Composição de Bases , Cavernas/microbiologia , DNA Arqueal/genética , DNA Bacteriano/genética , Lagos/microbiologia , Lipídeos/química , Methanosarcina/genética , Methanosarcina/isolamento & purificação , Dados de Sequência Molecular , Hibridização de Ácido Nucleico , RNA Ribossômico 16S/genética , Romênia , Análise de Sequência de DNA , Enxofre
15.
J Microbiol Methods ; 104: 36-42, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24955890

RESUMO

Extracellular DNA (eDNA) is a ubiquitous biological compound in aquatic sediment and soil. Previous studies suggested that eDNA plays an important role in biogeochemical element cycling, horizontal gene transfer and stabilization of biofilm structures. Previous methods for eDNA extraction were either not suitable for oligotrophic sediments or only allowed quantification but no genetic analyses. Our procedure is based on cell detachment and eDNA liberation from sediment particles by sequential washing with an alkaline sodium phosphate buffer followed by a separation of cells and eDNA. The separated eDNA is then bound onto silica particles and purified, whereas the intracellular DNA from the separated cells is extracted using a commercial kit. The method provides extra- and intracellular DNA of high purity that is suitable for downstream applications like PCR. Extracellular DNA was extracted from organic-rich shallow sediment of the Baltic Sea, glacially influenced sediment of the Barents Sea and from the oligotrophic South Pacific Gyre. The eDNA concentration in these samples varied from 23 to 626ngg(-1) wet weight sediment. A number of experiments were performed to verify each processing step. Although extraction efficiency is higher than other published methods, it is not fully quantitative.


Assuntos
Métodos Analíticos de Preparação de Amostras/métodos , DNA/isolamento & purificação , Sedimentos Geológicos/química , DNA/genética , Oceanos e Mares , Reação em Cadeia da Polimerase , Solo/química
16.
J Microbiol Methods ; 103: 3-5, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24858450

RESUMO

The functional mcrA gene of methanogens can generate phylogeny as congruent as the 16S rRNA gene phylogeny. For the mcrA sequences amplified by mlas/mcrA-rev primers, we created a database for taxonomical classification and propose cut-off values for OTU clustering and further analysis of α- and ß-diversity with the MOTHUR software.


Assuntos
Bases de Dados de Ácidos Nucleicos , Genes Arqueais , Sequenciamento de Nucleotídeos em Larga Escala , Methanomicrobiaceae/genética , Software , Biologia Computacional/métodos , Genômica , RNA Ribossômico 16S/genética , Valores de Referência
17.
Extremophiles ; 17(2): 311-27, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23358731

RESUMO

The microbial diversity of a deep saline aquifer used for geothermal heat storage in the North German Basin was investigated. Genetic fingerprinting analyses revealed distinct microbial communities in fluids produced from the cold and warm side of the aquifer. Direct cell counting and quantification of 16S rRNA genes and dissimilatory sulfite reductase (dsrA) genes by real-time PCR proved different population sizes in fluids, showing higher abundance of bacteria and sulfate reducing bacteria (SRB) in cold fluids compared with warm fluids. The operation-dependent temperature increase at the warm well probably enhanced organic matter availability, favoring the growth of fermentative bacteria and SRB in the topside facility after the reduction of fluid temperature. In the cold well, SRB predominated and probably accounted for corrosion damage to the submersible well pump and iron sulfide precipitates in the near wellbore area and topside facility filters. This corresponded to lower sulfate content in fluids produced from the cold well as well as higher content of hydrogen gas that was probably released from corrosion, and maybe favored growth of hydrogenotrophic SRB. This study reflects the high influence of microbial populations for geothermal plant operation, because microbiologically induced precipitative and corrosive processes adversely affect plant reliability.


Assuntos
Água Subterrânea/microbiologia , Bactérias Redutoras de Enxofre/isolamento & purificação , Precipitação Química , Corrosão , Alemanha , Sulfito de Hidrogênio Redutase/genética , Indústrias , Minerais , RNA Bacteriano/genética , RNA Ribossômico 16S/genética , Salinidade , Bactérias Redutoras de Enxofre/genética , Temperatura
18.
Appl Environ Microbiol ; 76(14): 4640-6, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20511427

RESUMO

Members of the nitrite-oxidizing genus Nitrospira are most likely responsible for the second step of nitrification, the conversion of nitrite (NO(2)(-)) to nitrate (NO(3)(-)), within various sponges. We succeeded in obtaining an enrichment culture of Nitrospira derived from the mesohyl of the marine sponge Aplysina aerophoba using a traditional cultivation approach. Electron microscopy gave first evidence of the shape and ultrastructure of this novel marine Nitrospira-like bacterium (culture Aa01). We characterized these bacteria physiologically with regard to optimal incubation conditions, especially the temperature and substrate range in comparison to other Nitrospira cultures. Best growth was obtained at temperatures between 28 degrees C and 30 degrees C in mineral medium with 70% North Sea water and a substrate concentration of 0.5 mM nitrite under microaerophilic conditions. The Nitrospira culture Aa01 is very sensitive against nitrite, because concentrations higher than 1.5 mM resulted in a complete inhibition of growth. Sequence analyses of the 16S rRNA gene revealed that the novel Nitrospira-like bacterium is separated from the sponge-specific subcluster and falls together with an environmental clone from Mediterranean sediments (98.6% similarity). The next taxonomically described species Nitrospira marina is only distantly related, with 94.6% sequence similarity, and therefore the culture Aa01 represents a novel species of nitrite-oxidizing bacteria.


Assuntos
Bactérias/classificação , Bactérias/metabolismo , Nitritos/metabolismo , Poríferos/microbiologia , Aerobiose , Anaerobiose , Animais , Bactérias/isolamento & purificação , Bactérias/ultraestrutura , Análise por Conglomerados , Meios de Cultura/química , DNA Bacteriano/química , DNA Bacteriano/genética , DNA Ribossômico/química , DNA Ribossômico/genética , Microscopia Eletrônica de Transmissão , Dados de Sequência Molecular , Mar do Norte , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Temperatura
19.
Environ Microbiol ; 10(5): 1175-88, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-18312394

RESUMO

Biofilters operated for the microbial oxidation of landfill methane at two sites in Northern Germany were analysed for the composition of their methanotrophic community by means of diagnostic microarray targeting the pmoA gene of methanotrophs. The gas emitted from site Francop (FR) contained the typical principal components (CH4, CO2, N2) only, while the gas at the second site Müggenburger Strasse (MU) was additionally charged with non-methane volatile organic compounds (NMVOCs). Methane oxidation activity measured at 22 degrees C varied between 7 and 103 microg CH4 (g dw)(-1) h(-1) at site FR and between 0.9 and 21 microg CH4 (g dw)(-1) h(-1) at site MU, depending on the depth considered. The calculated size of the active methanotrophic population varied between 3 x 10(9) and 5 x 10(11) cells (g dw)(-1) for biofilter FR and 4 x 10(8) to 1 x 10(10) cells (g dw)(-1) for biofilter MU. The methanotrophic community in both biofilters as well as the methanotrophs present in the landfill gas at site FR was strongly dominated by type II organisms, presumably as a result of high methane loads, low copper concentration and low nitrogen availability. Within each biofilter, community composition differed markedly with depth, reflecting either the different conditions of diffusive oxygen supply or the properties of the two layers of materials used in the filters or both. The two biofilter communities differed significantly. Type I methanotrophs were detected in biofilter FR but not in biofilter MU. The type II community in biofilter FR was dominated by Methylocystis species, whereas the biofilter at site MU hosted a high abundance of Methylosinus species while showing less overall methanotroph diversity. It is speculated that the differing composition of the type II population at site MU is driven by the presence of NMVOCs in the landfill gas fed to the biofilter, selecting for organisms capable of co-oxidative degradation of these compounds.


Assuntos
Ecossistema , Metano/metabolismo , Oxigenases de Função Mista/genética , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Eliminação de Resíduos , Microbiologia do Solo , Methylocystaceae/genética , Methylocystaceae/crescimento & desenvolvimento , Methylocystaceae/isolamento & purificação , Methylocystaceae/metabolismo , Methylosinus/genética , Methylosinus/crescimento & desenvolvimento , Methylosinus/isolamento & purificação , Methylosinus/metabolismo , Oxigenases de Função Mista/metabolismo , Solo/análise
20.
ISME J ; 1(3): 256-64, 2007 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-18062041

RESUMO

Permafrost-affected soils of the Siberian Arctic were investigated with regard to identification of nitrite oxidizing bacteria active at low temperature. Analysis of the fatty acid profiles of enrichment cultures grown at 4 degrees C, 10 degrees C and 17 degrees C revealed a pattern that was different from that of known nitrite oxidizers but was similar to fatty acid profiles of Betaproteobacteria. Electron microscopy of two enrichment cultures grown at 10 degrees C showed prevalent cells with a conspicuous ultrastructure. Sequence analysis of the 16S rRNA genes allocated the organisms to a so far uncultivated cluster of the Betaproteobacteria, with Gallionella ferruginea as next related taxonomically described organism. The results demonstrate that a novel genus of chemolithoautotrophic nitrite oxidizing bacteria is present in polygonal tundra soils and can be enriched at low temperatures up to 17 degrees C. Cloned sequences with high sequence similarities were previously reported from mesophilic habitats like activated sludge and therefore an involvement of this taxon in nitrite oxidation in nonarctic habitats is suggested. The presented culture will provide an opportunity to correlate nitrification with nonidentified environmental clones in moderate habitats and give insights into mechanisms of cold adaptation. We propose provisional classification of the novel nitrite oxidizing bacterium as 'Candidatus Nitrotoga arctica'.


Assuntos
Betaproteobacteria/classificação , Betaproteobacteria/isolamento & purificação , Nitritos/metabolismo , Microbiologia do Solo , Regiões Árticas , Betaproteobacteria/química , Betaproteobacteria/genética , DNA Bacteriano/química , DNA Bacteriano/genética , DNA Ribossômico/química , DNA Ribossômico/genética , Ácidos Graxos/análise , Genes de RNAr , Microscopia Eletrônica de Transmissão , Dados de Sequência Molecular , Oxirredução , Filogenia , Células Procarióticas/ultraestrutura , RNA Bacteriano/genética , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Homologia de Sequência do Ácido Nucleico , Sibéria
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...