Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
JPRAS Open ; 30: 17-22, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34355054

RESUMO

INTRODUCTION: Microtia, a congenital anomaly of the auricle with a wide spectrum of presentation with challenging reconstruction. Management depends on its severity with variable reconstructive options. Preoperative planning is crucial to achieve better results and decrease operative time. In this article, we aim to show the utility of an affordable technology with the use of a smartphone, an open-source computer-aided design (CAD) software, and a desktop 3D printer in planning future ear location for unilateral microtia reconstruction in step-by-step fashion. METHODOLOGY: Facial 3D scanning was done using a smartphone that has a three-dimensional capture system. The scan was then used in an open-sourced CAD software. A mirror image mask was created by reflecting normal side anatomic features to the abnormal side. The mask constitutes the desired area for reconstruction given the ear anthropometrics. Finally, the model was 3D printed and fitted to the patient in which incision marking and framework location was planned. DISCUSSION: Ear reconstruction requires careful assessment and specific technicality in its anthropometric measures. One important aspect in surgical planning resides in future ear location that varies between person to person. This variability makes the reconstructive option more customized based on the patient's needs. The utility of CAD software in the measurement and planning can help predict and optimize postoperative results as possible; however, it has major technical demands and added surgical fees. CONCLUSION: Herein, we demonstrate the efficacy of an easy-to-use system beneficial for preoperative planning that is affordable, time-saving, and cost effective.

2.
JPRAS Open ; 28: 121-125, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33855150

RESUMO

Microtia reconstruction using autologous costal cartilage can be one of the most challenging tasks in reconstructive surgery. An intraoperative guide using 2-dimentional drawing of the contralateral ear on an x-ray film remains the current standard of care. In this paper, we present the use of computer-aided design and desktop 3D printing to fabricate low cost, sterilizable auricular carving templates to serve as a peri-operative reference for microtia reconstruction. The design was made as a single component which incorporated the usual anatomic reference points of the ear based on Nagata technique as a Stereo-lithography file format (. STL) for 3D printing. The templates were created in sizes ranging from 55 mm to 70 mm with a 2 mm increment with an average production cost of 0.26 US dollars per material per template and about 4.5 US dollars for the whole set. Individual templates were then 3D-printed using a thermoplastic polyurethane (TPU 95A) semiflexible filament on a desktop fused deposition modeling, Ultimaker 2 + 3D printer. The produced template tolerated the sterilization process with no structural changes as compared to its pre-sterilization condition. In conclusion, we present cost-effective, sterilizable, multiscale auricular templates to guide the pre- and intra-operative carving of the cartilaginous framework during microtia reconstruction with more accuracy in a time efficient manner, thereby overcoming the drawbacks of using the traditional x-ray film. The templates are readily accessible and sharable for free through open-source software and can be directly 3D-printed using an affordable desktop 3D printer.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA