Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Am Chem Soc ; 144(37): 16883-16897, 2022 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-36089745

RESUMO

Understanding heterogeneous catalysts is a challenging pursuit due to surface site nonuniformity and aperiodicity in traditionally used materials. One example is sulfated metal oxides, which function as highly active catalysts and as supports for organometallic complexes. These applications are due to traits such as acidity, ability to act as a weakly coordinating ligand, and aptitude for promoting transformations via radical cation intermediates. Research is ongoing about the structural features of sulfated metal oxides that imbue the aforementioned properties, such as sulfate geometry and coordination. To better understand these materials, metal-organic frameworks (MOFs) have been targeted as structurally defined analogues. Composed of inorganic nodes and organic linkers, MOFs possess features such as high porosity and crystallinity, which make them attractive for mechanistic studies of heterogeneous catalysts. In this work, Zr6-based MOF NU-1000 is sulfated and characterized using techniques such as single crystal X-ray diffraction in addition to diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS). The dynamic nature of the sulfate binding motif is found to transition from monodentate, to bidentate, to tridentate depending on the degree of hydration, as supported by density functional theory (DFT) calculations. Heightened Brønsted acidity compared to the parent MOF was observed upon sulfation and probed through trimethylphosphine oxide physisorption, ammonia sorption, in situ ammonia DRIFTS, and DFT studies. With the support structure benchmarked, an organoiridium complex was chemisorbed onto the sulfated MOF node, and the efficacy of this supported catalyst was demonstrated for stoichiometric and catalytic activation of benzene-d6 and toluene with structure-activity relationships derived.


Assuntos
Estruturas Metalorgânicas , Amônia , Benzeno , Catálise , Ligantes , Estruturas Metalorgânicas/química , Óxidos/química , Sulfatos , Óxidos de Enxofre , Tolueno , Zircônio/química
2.
Artigo em Inglês | MEDLINE | ID: mdl-35834365

RESUMO

Atomically precise cerium oxo clusters offer a platform to investigate structure-property relationships that are much more complex in the ill-defined bulk material cerium dioxide. We investigated the activity of the MCe70 torus family (M = Cd, Ce, Co, Cu, Fe, Ni, and Zn), a family of discrete oxysulfate-based Ce70 rings linked by monomeric cation units, for CO oxidation. CuCe70 emerged as the best performing MCe70 catalyst among those tested, prompting our exploration of the role of the interfacial unit on catalytic activity. Temperature-programmed reduction (TPR) studies of the catalysts indicated a lower temperature reduction in CuCe70 as compared to CeCe70. In situ diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) indicated that CuCe70 exhibited a faster formation of Ce3+ and contained CO bridging sites absent in CeCe70. Isothermal CO adsorption measurements demonstrated a greater uptake of CO by CuCe70 as compared to CeCe70. The calculated energies for the formation of a single oxygen defect in the structure significantly decreased with the presence of Cu at the linkage site as opposed to Ce. This study revealed that atomic-level changes in the interfacial unit can change the reducibility, CO binding/uptake, and oxygen vacancy defect formation energetics in the MCe70 family to thus tune their catalytic activity.

3.
ACS Appl Mater Interfaces ; 14(2): 3048-3056, 2022 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-34995051

RESUMO

The efficient capture of toxic gases, such as ammonia (NH3) and sulfur dioxide (SO2), can protect the general population and mitigate widespread air pollution. Metal-organic frameworks (MOFs) comprise a tunable class of adsorbents with high surface areas that can meet this challenge by selectively capturing these gases at low concentrations. In this work, we explored how modifying the metal ions in the node of an isostructural MOF series from a transition metal to a lanthanide or actinide influences the electronic environment of the node-based active site. Next, we investigated the adsorption properties of each MOF toward the relatively basic NH3 and relatively acidic SO2 gases. Within the NU-907 family of MOFs, we found that Zr6-NU-907 exhibits the best uptake toward NH3 at low pressures, while Th6-NU-907 demonstrates the best low-pressure performance for SO2 adsorption. Tracking the infrared (IR) stretching frequency of the node-based µ3-OH groups provides insights into the electronegativity of the metal ion and suggests that the most electronegative metal ion (Zr) affords the node with the best NH3 uptake at low pressures. In contrast, the Th6 node contains additional coordinated water groups relative to the other M6 nodes, which appears to yield the MOF with the greatest affinity for SO2 uptake that occurs predominately through reversible physisorption interactions. Finally, in situ NH3 IR spectroscopic studies indicate that both NH4+ and Lewis-bound NH3 species form during adsorption. Combined, these results suggest that tuning the electronic properties and structure of the node-based active site in an MOF presents a viable strategy to change the affinity of an MOF toward toxic gases.

4.
J Am Chem Soc ; 143(26): 9961-9971, 2021 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-34161089

RESUMO

While iridium-based perovskites have been identified as promising candidates for the oxygen evolution reaction (OER) in proton exchange membrane (PEM) electrolyzer applications, an improved fundamental understanding of these highly dynamic materials under reaction conditions is needed to inform more robust future catalyst design. Herein, we study the highly active SrIr0.8Zn0.2O3 perovskite for the OER in acid by employing electrochemical experiments with in situ and ex situ characterization techniques to understand the dynamic nature of this material at both short and long time scales. We observe initial intrinsic OER activity improvement with electrochemical cycling as well as an initial increase of Ir oxidation state under OER conditions via in situ X-ray absorption spectroscopy. We discover that the SrIr0.8Zn0.2O3 perovskite experiences an OER-induced metal to insulator transition (MIT) with extensive electrochemical cycling, caused by surface reorganization and changes to the material crystallinity that occur with exposure to an acidic and oxidizing environment. Our novel identification of an OER-induced MIT for iridate perovskites reveals an additional stability concern for iridate catalysts which are known to experience material dissolution challenges; this work ultimately aims to inform future catalyst material design for PEM water electrolysis applications.

5.
ACS Appl Mater Interfaces ; 13(19): 22485-22494, 2021 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-33961384

RESUMO

Ammonia capture by porous materials is relevant to protection of humans from chemical threats, while ammonia separation may be relevant to its isolation and use following generation by emerging electrochemical schemes. Our previous work described both reversible and irreversible interactions of ammonia with the metal-organic framework (MOF) material, NU-1000, following thermal treatment at either 120 or 300 °C. In the present work, we have examined NU-1000-Cl, a variant that features a modified node structure-at ambient temperature, Zr6(µ3-O)4(µ3-OH)4(H2O)812+ in place of Zr6(µ3-O)4(µ3-OH)4(OH)4(H2O)48+. Carboxylate termini from each of eight linkers balance the 8+ charge of the parent node, while four chloride ions, attached only by hydrogen bonding, complete the charge balance for the 12+ version. We find that both reversible and irreversible uptake of ammonia are enhanced for NU-1000-Cl, relative to the chloride-free version. Two irreversible interactions were observed via in situ diffuse-reflectance infrared Fourier-transform spectroscopy: coordination of NH3 at open Zr sites generated during thermal pretreatment and formation of NH4+ by proton transfer from node aqua ligands. The irreversibility of the latter appears to be facilitated by the presence chloride ions, as NH4+ formation occurs reversibly with chloride-free NU-1000. At room temperature, chemically reversible (and irreversible) interactions between ammonia and NU-1000-Cl result in separation of NH3 from N2 when gas mixtures are examined with breakthrough instrumentation, as evinced by a much longer breakthrough time (∼9 min) for NH3.

6.
ACS Appl Mater Interfaces ; 13(17): 20081-20093, 2021 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-33886253

RESUMO

Ammonia uptake by high-capacity and high-porosity sorbents is a promising approach to its storage and release, capture and mitigation, and chemical separation. Here, we examined the ammonia sorption behavior of several versions of an archetypal zirconium-based metal-organic framework (MOF) material, NU-1000-a meso- and microporous crystalline compound having the empirical formula (1,3,6,8-tetrakis(p-benzoate)pyrene)2 Zr6(µ3-O)4(µ3-OH)4(H2O)4(OH)4 with linkers and nodes arranged to satisfy a csq topology. Depending on the thermal treatment protocol used prior to sorption measurements, ammonia can physisorb to NU-1000 via hydrogen-bonding and London-dispersion interactions and chemisorb via Brønsted acid-base reactions with node-integrated proton donors (µ3-hydroxos) and node-ligated proton donors (terminal hydroxos), via simple coordination at open Zr(IV) sites, or via dissociative coordination to Zr(IV) as NH2- and protonation of a node-based µ3-oxo. Ammonia adsorption occurs via both reversible and irreversible processes. The latter are of particular interest for protection and mitigation. Notably, the unexpected dissociative adsorption occurs only with nodes that have been fully dehydrated and irreversibly structurally distorted via thermal pre-treatment-a finding that is supported by density functional theory calculations. Differentiating and ranking the relative importance of the many modes of adsorption was facilitated, in part, by the availability of variants of NU-1000 that replace the majority of terminal aqua and hydroxo ligands with nonstructural formate ligands, auxiliary ditopic linkers, or both. The study provides insights into the chemical basis for both reversible and irreversible uptake of ammonia by Zr-MOFs and related compounds. The unexpectedly rich variety of sorption motifs suggest the criteria for designing or choosing MOFs that are optimal for specific ammonia-centric applications.

7.
ACS Appl Mater Interfaces ; 13(8): 10409-10415, 2021 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-33591706

RESUMO

Polymers of intrinsic microporosity (PIMs) are promising materials for gas adsorption because of their high surface area, processability, and tailorable backbone. Specifically, nitrile groups on the backbone of PIM-1, an archetypal PIM, can be converted to other functional groups to selectively capture targeted gas molecules. Despite these appealing features of PIMs, their potential has mainly only been realized for the separation of nontoxic gases. Here, we prepared PIM-1 materials modified with carboxylic acid and amidoxime functional groups and investigated their performance as adsorbents for the capture of ammonia (NH3) and sulfur dioxide (SO2) gases. After determining the Brønsted acidity or basicity of the PIMs from potentiometric acid-base titrations, which can be correlated with affinity for acidic or basic toxic gases, we explored the uptake capacity toward NH3 and SO2, respectively. Gas sorption studies revealed that the carboxylated PIM showed higher affinity toward NH3 through the incorporation of Brønsted acid sites, while the amidoxime functionalized PIM exhibited affinity toward SO2 through the installed of slightly basic functional groups. Overall, this study highlights new insight into PIMs as solid sorbent materials for capturing toxic gases, which can be transferred to their potential use in practical applications, such as personal protective equipment or air filtration.

8.
Chem Sci ; 11(18): 4648-4668, 2020 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-34122920

RESUMO

We report the structural properties of ultra-small ThO2 and UO2 nanoparticles (NPs), which were synthesized without strong binding surface ligands by employing a covalent organic framework (COF-5) as an inert template. The resultant NPs were used to observe how structural properties are affected by decreasing grain size within bulk actinide oxides, which has implications for understanding the behavior of nuclear fuel materials. Through a comprehensive characterization strategy, we gain insight regarding how structure at the NP surface differs from the interior. Characterization using electron microscopy and small-angle X-ray scattering indicates that growth of the ThO2 and UO2 NPs was confined by the pores of the COF template, resulting in sub-3 nm particles. X-ray absorption fine structure spectroscopy results indicate that the NPs are best described as ThO2 and UO2 materials with unpassivated surfaces. The surface layers of these particles compensate for high surface energy by exhibiting a broader distribution of Th-O and U-O bond distances despite retaining average bond lengths that are characteristic of bulk ThO2 and UO2. The combined synthesis and physical characterization efforts provide a detailed picture of actinide oxide structure at the nanoscale, which remains highly underexplored compared to transition metal counterparts.

9.
ACS Appl Mater Interfaces ; 11(35): 32090-32096, 2019 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-31441295

RESUMO

We report the performance of UiO-66 and its Brønsted acid functionalized derivative, UiO-66-(COOH)2, as heterogeneous catalysts for levulinic acid esterification with ethanol. Importantly, compared with UiO-66, UiO-66-(COOH)2 displayed superior catalytic performance (up to 97.0 ± 1.1% yield of ethyl levulinate) attributed to the synergistic effect between Lewis acidic Zr clusters and Brønsted acidic -COOH groups. Furthermore, UiO-66-(COOH)2 was stable and reusable without an appreciable loss in catalytic activity for at least five consecutive cycles. This study demonstrates that the interplay of Brønsted and Lewis acid sites in zirconium metal-organic frameworks leads to more efficient catalytic conversion of a biomass feedstock to biofuel, and with further hypothesis driven research, additional materials that show promise as candidates for catalytic conversion of biomass feedstocks to biofuels and valuable chemicals can be developed.

10.
Nanoscale Adv ; 1(12): 4878-4887, 2019 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-36133105

RESUMO

Silica can take many forms, and its interaction with water can change dramatically at the interface. Silica based systems offer a rich tapestry to probe the confinement of water as size and volume can be controlled by various templating strategies and synthetic procedures. To this end, microporous silica nanoparticles have been developed by a reverse microemulsion method utilizing zinc nanoclusters encapsulated in hydroxyl-terminated polyamidoamine (PAMAM-OH) dendrimers as a soft template. These nanoparticles were made tunable within the outer diameter range of 20-50 nm with a core mesopore of 2-15 nm. Synthesized nanoparticles were used to study the effects of surface area and microporous volumes on the vibrational spectroscopy of water. These spectra reveal contributions from bulk interfacial/interparticle water, ice-like surface water, liquid-like water, and hydrated silica surfaces suggesting that microporous silica nanoparticles allow a way to probe silica water interactions at the molecular scale.

11.
Science ; 362(6419): 1144-1148, 2018 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-30523107

RESUMO

Fluoride ion batteries are potential "next-generation" electrochemical storage devices that offer high energy density. At present, such batteries are limited to operation at high temperatures because suitable fluoride ion-conducting electrolytes are known only in the solid state. We report a liquid fluoride ion-conducting electrolyte with high ionic conductivity, wide operating voltage, and robust chemical stability based on dry tetraalkylammonium fluoride salts in ether solvents. Pairing this liquid electrolyte with a copper-lanthanum trifluoride (Cu@LaF3) core-shell cathode, we demonstrate reversible fluorination and defluorination reactions in a fluoride ion electrochemical cell cycled at room temperature. Fluoride ion-mediated electrochemistry offers a pathway toward developing capacities beyond that of lithium ion technology.

12.
Inorg Chem ; 56(10): 5710-5719, 2017 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-28471186

RESUMO

Oxygen and aluminum K-edge X-ray absorption spectroscopy (XAS), imaging from a scanning transmission X-ray microscope (STXM), and first-principles calculations were used to probe the composition and morphology of bulk aluminum metal, α- and γ-Al2O3, and several types of aluminum nanoparticles. The imaging results agreed with earlier transmission electron microscopy studies that showed a 2 to 5 nm thick layer of Al2O3 on all the Al surfaces. Spectral interpretations were guided by examination of the calculated transition energies, which agreed well with the spectroscopic measurements. Features observed in the experimental O and Al K-edge XAS were used to determine the chemical structure and phase of the Al2O3 on the aluminum surfaces. For unprotected 18 and 100 nm Al nanoparticles, this analysis revealed an oxide layer that was similar to γ-Al2O3 and comprised of both tetrahedral and octahedral Al coordination sites. For oleic acid-protected Al nanoparticles, only tetrahedral Al oxide coordination sites were observed. The results were correlated to trends in the reactivity of the different materials, which suggests that the structures of different Al2O3 layers have an important role in the accessibility of the underlying Al metal toward further oxidation. Combined, the Al K-edge XAS and STXM results provided detailed chemical information that was not obtained from powder X-ray diffraction or imaging from a transmission electron microscope.

13.
Sci Rep ; 6: 32061, 2016 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-27580515

RESUMO

In this work we theoretically and experimentally analyze the resonant behavior of individual 3 × 3 gold particle oligomers illuminated under normal and oblique incidence. While this structure hosts both dipolar and quadrupolar electric and magnetic delocalized modes, only dipolar electric and quadrupolar magnetic modes remain at normal incidence. These modes couple into a strongly asymmetric spectral response typical of a Fano-like resonance. In the basis of the coupled mode theory, an analytical representation of the optical extinction in terms of singular functions is used to identify the hybrid modes emerging from the electric and magnetic mode coupling and to interpret the asymmetric line profiles. Especially, we demonstrate that the characteristic Fano line shape results from the spectral interference of a broad hybrid mode with a sharp one. This structure presents a special feature in which the electric field intensity is confined on different lines of the oligomer depending on the illumination wavelength relative to the Fano dip. This Fano-type resonance is experimentally observed performing extinction cross section measurements on arrays of gold nano-disks. The vanishing of the Fano dip when increasing the incidence angle is also experimentally observed in accordance with numerical simulations.

14.
Proc Natl Acad Sci U S A ; 113(19): 5159-66, 2016 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-27114536

RESUMO

Colloidal chemistry is used to control the size, shape, morphology, and composition of metal nanoparticles. Model catalysts as such are applied to catalytic transformations in the three types of catalysts: heterogeneous, homogeneous, and enzymatic. Real-time dynamics of oxidation state, coordination, and bonding of nanoparticle catalysts are put under the microscope using surface techniques such as sum-frequency generation vibrational spectroscopy and ambient pressure X-ray photoelectron spectroscopy under catalytically relevant conditions. It was demonstrated that catalytic behavior and trends are strongly tied to oxidation state, the coordination number and crystallographic orientation of metal sites, and bonding and orientation of surface adsorbates. It was also found that catalytic performance can be tuned by carefully designing and fabricating catalysts from the bottom up. Homogeneous and heterogeneous catalysts, and likely enzymes, behave similarly at the molecular level. Unifying the fields of catalysis is the key to achieving the goal of 100% selectivity in catalysis.


Assuntos
Catálise , Enzimas/química , Nanopartículas Metálicas/química , Nanopartículas Metálicas/ultraestrutura , Modelos Químicos , Oxigênio/química , Absorção Fisico-Química , Adsorção , Coloides/química , Teste de Materiais , Oxirredução , Tamanho da Partícula
15.
Dalton Trans ; 45(24): 9932-41, 2016 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-26979489

RESUMO

A nano-catalyst comprised of oxidized Co NPs supported on MgO nano-plates was synthesized via a hydrothermal co-precipitation strategy and calcination in O2 and subsequently in H2 at 250 °C. Spectro-microscopy characterization was performed by scanning transmission electron microscopy, electron energy loss spectroscopy and scanning X-ray transmission microscopy. Surface measurements under H2 and H2 + CO atmospheres were obtained by ambient pressure X-ray photoelectron spectroscopy and in situ X-ray absorption spectroscopy in the 225-480 °C range. These measurements at the atomic and microscopic levels demonstrated that the oxidized Co nanoparticles uniformly decorated the MgO nano-plates. The surfaces are enriched with Co, and with a mixture of Co(OH)2 and CoO under H2 and H2 + CO atmospheres. Under a H2 atmosphere, the outermost surfaces were composed of (lattice) O(2-), CO3(2-) and OH(-). No inorganic carbonates were observed in the bulk. Chemisorbed CO, likely on the oxidized Co surfaces, was observed at the expense of O(2-) under 300 mTorr H2 + CO (2 : 1) at 225 °C. Gas phase CO2 was detected under 32 Torr H2 + CO (2 : 1) at 225 °C upon prolonged reaction time, and was attributed to a surface chemical reaction between O(2-) and chemisorbed CO. Furthermore, sp(3) like carbon species were detected on the otherwise carbon free surface in H2 + CO, which remained on the surface under the subsequent reaction conditions. The formation of sp(3) like hydrocarbons was ascribed to a surface catalytic reaction between the chemisorbed CO and OH(-) as the apparent hydrogen source.

16.
J Am Chem Soc ; 137(32): 10231-7, 2015 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-26168190

RESUMO

Several types of mesoporous aluminosilicates were synthesized and evaluated in the catalytic isomerization of n-hexane, both with and without Pt nanoparticles loaded into the mesopores. The materials investigated included mesoporous MFI and BEA type zeolites, MCF-17 mesoporous silica, and an aluminum modified MCF-17. The acidity of the materials was investigated through pyridine adsorption and Fourier Transform-Infrared Spectroscopy (FT-IR). It was found that the strong Brönsted acid sites in the micropores of the zeolite catalysts facilitated the cracking of hexane. However, the medium strength acid sites on the Al modified MCF-17 mesoporous silica greatly enhanced the isomerization reaction. Through the loading of different amounts of Pt into the mesopores of the Al modified MCF-17, the relationship between the metal nanoparticles and acidic sites on the support was revealed.

17.
Nat Commun ; 6: 6538, 2015 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-25754475

RESUMO

Carbon dioxide capture and use as a carbon feedstock presents both environmental and industrial benefits. Here we report the discovery of a hybrid oxide catalyst comprising manganese oxide nanoparticles supported on mesoporous spinel cobalt oxide, which catalyses the conversion of carbon dioxide to methanol at high yields. In addition, carbon-carbon bond formation is observed through the production of ethylene. We document the existence of an active interface between cobalt oxide surface layers and manganese oxide nanoparticles by using X-ray absorption spectroscopy and electron energy-loss spectroscopy in the scanning transmission electron microscopy mode. Through control experiments, we find that the catalyst's chemical nature and architecture are the key factors in enabling the enhanced methanol synthesis and ethylene production. To demonstrate the industrial applicability, the catalyst is also run under high conversion regimes, showing its potential as a substitute for current methanol synthesis technologies.

18.
Small ; 11(25): 3045-53, 2015 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-25727527

RESUMO

Bimetallic nanoparticle (NP) catalysts are interesting for the development of selective catalysts in reactions such as the reduction of CO2 by H2 to form hydrocarbons. Here the synthesis of Ni-Co NPs is studied, and the morphological and structural changes resulting from their activation (via oxidation/reduction cycles), and from their operation under reaction conditions, are presented. Using ambient-pressure X-ray photoelectron spectroscopy, X-ray absorption spectroscopy, and transmission electron microscopy, it is found that the initial core-shell structure evolves to form a surface alloy due to nickel migration from the core. Interestingly, the core consists of a Ni-rich single crystal and a void with sharp interfaces. Residual phosphorous species, coming from the ligands used for synthesis, are found initially concentrated in the NP core, which later diffuse to the surface.

19.
J Am Chem Soc ; 136(49): 17207-12, 2014 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-25398051

RESUMO

The effect of acidic properties of mesoporous zeolites on the control of product selectivity during the hydrogenative isomerization of methylcyclopentane has been investigated. A series of mesoporous zeolites with controlled acidic properties were prepared by postdealumination process with hydrochloric acid under hydrothermal conditions, and the resultant zeolites used for supporting colloidal Pt nanoparticles (NPs) with a mean size of 2.5 nm (± 0.6 nm). As compared to the pure Pt NPs supported on catalytically inert mesoporous silica (MCF-17) as the reference catalyst that can produce isomers most selectively (∼80%), the Pt NPs supported on mesoporous zeolites produced C6-cyclic hydrocarbons (i.e., cyclohexane and benzene) most dominantly. The type and strength of the Brönsted (B) and Lewis (L) acid sites of those zeolites with a controlled Al amount are analyzed by using FT-IR after the adsorption of pyridine and NH3 temperature-programmed desorption measurements, and they are correlated with the selectivity change between cyclohexane and benzene. From this investigation, we found a linear relationship between the number of Brönsted acid sites and the formation rate for cyclohexane. In addition, we revealed that more Lewis acidic zeolite having relatively smaller B/L ratio is effective for the cyclohexane formation, whereas more Brönsted acidic zeolite having relatively larger B/L ratio is effective for the benzene formation.

20.
J Am Chem Soc ; 136(47): 16661-5, 2014 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-25387226

RESUMO

When pure mesoporous silica (MCF-17) was modified with aluminum (Al modified MCF-17), Lewis acid sites were created, but this material was inactive for the catalytic conversion (reforming) of n-hexane to isomers. When colloidally synthesized platinum nanoparticles were loaded onto traditional MCF-17, the catalyst showed very low activity toward isomer production. However, when Pt nanoparticles were loaded onto Al modified MCF-17, isomerization became the dominant catalytic pathway, with extremely high activity and selectivity (>90%), even at high temperatures (240-360 °C). This highly efficient catalytic chemistry was credited to the tandem effect between the acidic Al modified MCF-17 and the Pt metal.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...