Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Biol Evol ; 41(2)2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38306290

RESUMO

Orthology information has been used for searching patterns in high-dimensional data, allowing transferring functional information between species. The key concept behind this strategy is that orthologous genes share ancestry to some extent. While reconstructing the history of a single gene is feasible with the existing computational resources, the reconstruction of entire biological systems remains challenging. In this study, we present Bridge, a new algorithm designed to infer the evolutionary root of orthologous genes in large-scale evolutionary analyses. The Bridge algorithm infers the evolutionary root of a given gene based on the distribution of its orthologs in a species tree. The Bridge algorithm is implemented in R and can be used either to assess genetic changes across the evolutionary history of orthologous groups or to infer the onset of specific traits in a biological system.


Assuntos
Evolução Biológica , Evolução Molecular , Algoritmos , Filogenia
2.
Biomedicines ; 9(10)2021 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-34680414

RESUMO

Sepsis remains a leading cause of death in ICUs all over the world, with pediatric sepsis accounting for a high percentage of mortality in pediatric ICUs. Its complexity makes it difficult to establish a consensus on genetic biomarkers and therapeutic targets. A promising strategy is to investigate the regulatory mechanisms involved in sepsis progression, but there are few studies regarding gene regulation in sepsis. This work aimed to reconstruct the sepsis regulatory network and identify transcription factors (TFs) driving transcriptional states, which we refer to here as master regulators. We used public gene expression datasets to infer the co-expression network associated with sepsis in a retrospective study. We identified a set of 15 TFs as potential master regulators of pediatric sepsis, which were divided into two main clusters. The first cluster corresponded to TFs with decreased activity in pediatric sepsis, and GATA3 and RORA, as well as other TFs previously implicated in the context of inflammatory response. The second cluster corresponded to TFs with increased activity in pediatric sepsis and was composed of TRIM25, RFX2, and MEF2A, genes not previously described as acting in a coordinated way in pediatric sepsis. Altogether, these results show how a subset of master regulators TF can drive pathological transcriptional states, with implications for sepsis biology and treatment.

3.
Am J Hum Genet ; 108(7): 1169-1189, 2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-34038741

RESUMO

Identifying the molecular mechanisms by which genome-wide association study (GWAS) loci influence traits remains challenging. Chromatin accessibility quantitative trait loci (caQTLs) help identify GWAS loci that may alter GWAS traits by modulating chromatin structure, but caQTLs have been identified in a limited set of human tissues. Here we mapped caQTLs in human liver tissue in 20 liver samples and identified 3,123 caQTLs. The caQTL variants are enriched in liver tissue promoter and enhancer states and frequently disrupt binding motifs of transcription factors expressed in liver. We predicted target genes for 861 caQTL peaks using proximity, chromatin interactions, correlation with promoter accessibility or gene expression, and colocalization with expression QTLs. Using GWAS signals for 19 liver function and/or cardiometabolic traits, we identified 110 colocalized caQTLs and GWAS signals, 56 of which contained a predicted caPeak target gene. At the LITAF LDL-cholesterol GWAS locus, we validated that a caQTL variant showed allelic differences in protein binding and transcriptional activity. These caQTLs contribute to the epigenomic characterization of human liver and help identify molecular mechanisms and genes at GWAS loci.


Assuntos
Cromatina/metabolismo , Fígado/metabolismo , Locos de Características Quantitativas , Motivos de Aminoácidos , Sítios de Ligação , Montagem e Desmontagem da Cromatina , Elementos Facilitadores Genéticos , Variação Genética , Estudo de Associação Genômica Ampla , Humanos , Regiões Promotoras Genéticas , Ligação Proteica , Fatores de Transcrição/química , Fatores de Transcrição/metabolismo , Transcriptoma
4.
Diabetes ; 70(7): 1581-1591, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33849996

RESUMO

Identifying the tissue-specific molecular signatures of active regulatory elements is critical to understand gene regulatory mechanisms. Here, we identify transcription start sites (TSS) using cap analysis of gene expression (CAGE) across 57 human pancreatic islet samples. We identify 9,954 reproducible CAGE tag clusters (TCs), ∼20% of which are islet specific and occur mostly distal to known gene TSS. We integrated islet CAGE data with histone modification and chromatin accessibility profiles to identify epigenomic signatures of transcription initiation. Using a massively parallel reporter assay, we validated the transcriptional enhancer activity for 2,279 of 3,378 (∼68%) tested islet CAGE elements (5% false discovery rate). TCs within accessible enhancers show higher enrichment to overlap type 2 diabetes genome-wide association study (GWAS) signals than existing islet annotations, which emphasizes the utility of mapping CAGE profiles in disease-relevant tissue. This work provides a high-resolution map of transcriptional initiation in human pancreatic islets with utility for dissecting active enhancers at GWAS loci.


Assuntos
Ilhotas Pancreáticas/fisiologia , Sítio de Iniciação de Transcrição , Elementos Facilitadores Genéticos , Estudo de Associação Genômica Ampla , Humanos , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas
5.
Sci Rep ; 10(1): 17445, 2020 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-33060836

RESUMO

CHARGE syndrome, a rare multiple congenital anomaly condition, is caused by haploinsufficiency of the chromatin remodeling protein gene CHD7 (Chromodomain helicase DNA binding protein 7). Brain abnormalities and intellectual disability are commonly observed in individuals with CHARGE, and neuronal differentiation is reduced in CHARGE patient-derived iPSCs and conditional knockout mouse brains. However, the mechanisms of CHD7 function in nervous system development are not well understood. In this study, we asked whether CHD7 promotes gene transcription in neural progenitor cells via changes in chromatin accessibility. We used Chd7 null embryonic stem cells (ESCs) derived from Chd7 mutant mouse blastocysts as a tool to investigate roles of CHD7 in neuronal and glial differentiation. Loss of Chd7 significantly reduced neuronal and glial differentiation. Sholl analysis showed that loss of Chd7 impaired neuronal complexity and neurite length in differentiated neurons. Genome-wide studies demonstrated that loss of Chd7 leads to modified chromatin accessibility (ATAC-seq) and differential nascent expression (Bru-Seq) of neural-specific genes. These results suggest that CHD7 acts preferentially to alter chromatin accessibility of key genes during the transition of NPCs to neurons to promote differentiation. Our results form a basis for understanding the cell stage-specific roles for CHD7-mediated chromatin remodeling during cell lineage acquisition.


Assuntos
Cromatina/química , Proteínas de Ligação a DNA/metabolismo , Células-Tronco Embrionárias/citologia , Regulação da Expressão Gênica no Desenvolvimento , Células-Tronco Neurais/citologia , Neurônios/citologia , Animais , Blastocisto/metabolismo , Diferenciação Celular , Elementos Facilitadores Genéticos , Epigênese Genética , Perfilação da Expressão Gênica , Camundongos , Camundongos Knockout , Fatores de Transcrição/metabolismo
6.
PLoS One ; 13(4): e0195788, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29659628

RESUMO

From whole organisms to individual cells, responses to environmental conditions are influenced by genetic makeup, where the effect of genetic variation on a trait depends on the environmental context. RNA-sequencing quantifies gene expression as a molecular trait, and is capable of capturing both genetic and environmental effects. In this study, we explore opportunities of using allele-specific expression (ASE) to discover cis-acting genotype-environment interactions (GxE)-genetic effects on gene expression that depend on an environmental condition. Treating 17 common, clinical traits as approximations of the cellular environment of 267 skeletal muscle biopsies, we identify 10 candidate environmental response expression quantitative trait loci (reQTLs) across 6 traits (12 unique gene-environment trait pairs; 10% FDR per trait) including sex, systolic blood pressure, and low-density lipoprotein cholesterol. Although using ASE is in principle a promising approach to detect GxE effects, replication of such signals can be challenging as validation requires harmonization of environmental traits across cohorts and a sufficient sampling of heterozygotes for a transcribed SNP. Comprehensive discovery and replication will require large human transcriptome datasets, or the integration of multiple transcribed SNPs, coupled with standardized clinical phenotyping.


Assuntos
Microambiente Celular , Regulação da Expressão Gênica , Interação Gene-Ambiente , Variação Genética , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/metabolismo , Metabolismo Energético , Estudos de Associação Genética , Genótipo , Humanos , Músculo Esquelético/citologia , Fenótipo , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas
7.
Am J Hum Genet ; 102(4): 620-635, 2018 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-29625024

RESUMO

Genome-wide association studies (GWASs) and functional genomics approaches implicate enhancer disruption in islet dysfunction and type 2 diabetes (T2D) risk. We applied genetic fine-mapping and functional (epi)genomic approaches to a T2D- and proinsulin-associated 15q22.2 locus to identify a most likely causal variant, determine its direction of effect, and elucidate plausible target genes. Fine-mapping and conditional analyses of proinsulin levels of 8,635 non-diabetic individuals from the METSIM study support a single association signal represented by a cluster of 16 strongly associated (p < 10-17) variants in high linkage disequilibrium (r2 > 0.8) with the GWAS index SNP rs7172432. These variants reside in an evolutionarily and functionally conserved islet and ß cell stretch or super enhancer; the most strongly associated variant (rs7163757, p = 3 × 10-19) overlaps a conserved islet open chromatin site. DNA sequence containing the rs7163757 risk allele displayed 2-fold higher enhancer activity than the non-risk allele in reporter assays (p < 0.01) and was differentially bound by ß cell nuclear extract proteins. Transcription factor NFAT specifically potentiated risk-allele enhancer activity and altered patterns of nuclear protein binding to the risk allele in vitro, suggesting that it could be a factor mediating risk-allele effects. Finally, the rs7163757 proinsulin-raising and T2D risk allele (C) was associated with increased expression of C2CD4B, and possibly C2CD4A, both of which were induced by inflammatory cytokines, in human islets. Together, these data suggest that rs7163757 contributes to genetic risk of islet dysfunction and T2D by increasing NFAT-mediated islet enhancer activity and modulating C2CD4B, and possibly C2CD4A, expression in (patho)physiologic states.


Assuntos
Proteínas de Ligação ao Cálcio/genética , Sequência Conservada , Elementos Facilitadores Genéticos/genética , Evolução Molecular , Ilhotas Pancreáticas/patologia , Mutação/genética , Proteínas Nucleares/genética , Fatores de Transcrição/genética , Idoso , Alelos , Animais , Sequência de Bases , Proteínas de Ligação ao Cálcio/metabolismo , Linhagem Celular , Cromatina/metabolismo , Cromossomos Humanos Par 15/genética , Citocinas/metabolismo , DNA Intergênico/genética , Humanos , Mediadores da Inflamação/metabolismo , Camundongos , Pessoa de Meia-Idade , Fatores de Transcrição NFATC/metabolismo , Mapeamento Físico do Cromossomo , Polimorfismo de Nucleotídeo Único/genética , Proinsulina/metabolismo , Ratos , Fatores de Risco
8.
Artigo em Inglês | MEDLINE | ID: mdl-28904552

RESUMO

In tropical America, principally in Northeastern Brazil, the leaf extract of Anacardium occidentale is traditionally used for treatment of different diseases. However, chemical and biological properties and activities of Anacardium occidentale are poorly investigated and known. Here, we evaluated the antioxidant and anti-inflammatory activities "in vitro" of leaf extract from Anacardium occidentale. Our results show that leaf extract exhibits antioxidant activity when used to treat RAW 264.7 macrophage cells. Antioxidant effects were observed by decrease in oxidative damage in macrophage cells treated with 0.5 µg/mL and 5 µg/mL of leaf extract. Moreover, leaf extract reversed oxidative damage and inflammatory parameters induced in LPS-stimulated RAW 264.7 macrophage cells. Leaf extract at 0.5 µg/mL and 5 µg/mL was able to inhibit release of TNF-α and IL-1ß in LPS-stimulated cells. Taken together, our results indicate antioxidant and anti-inflammatory effects of leaf extract from Anacardium occidentale and reveal the positive effects that intake of these products can mediate in biological system.

9.
J Med Food ; 19(10): 922-930, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27602660

RESUMO

In South America, particularly in the Northeastern regions of Brazil, Turnera subulata leaf extract is used as an alternative traditional medicine approach for several types of chronic diseases, such as diabetes, hypertension, chronic pain, and general inflammation. Despite its widespread use, little is known about the medicinal properties of the plants of this genus. In this study, we evaluate the antioxidant and anti-inflammatory of T. subulata leaf extract in an in vitro model of inflammation, using lipopolysaccharide-stimulated RAW-264.7 macrophage cell line. We observed that cotreatment with T. subulata leaf extract was able to reduce the oxidative stress in cells due to inflammatory response. More importantly, we observed that the leaf extract was able to directly modulate inflammatory response by altering activity of members of the mitogen-activated protein kinase pathways. Our results demonstrate for the first time that T. subulata have antioxidant and anti-inflammatory properties, which warrant further investigation of the medicinal potential of this species.

10.
Nat Commun ; 7: 11764, 2016 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-27353450

RESUMO

Type 2 diabetes (T2D) results from the combined effects of genetic and environmental factors on multiple tissues over time. Of the >100 variants associated with T2D and related traits in genome-wide association studies (GWAS), >90% occur in non-coding regions, suggesting a strong regulatory component to T2D risk. Here to understand how T2D status, metabolic traits and genetic variation influence gene expression, we analyse skeletal muscle biopsies from 271 well-phenotyped Finnish participants with glucose tolerance ranging from normal to newly diagnosed T2D. We perform high-depth strand-specific mRNA-sequencing and dense genotyping. Computational integration of these data with epigenome data, including ATAC-seq on skeletal muscle, and transcriptome data across diverse tissues reveals that the tissue-specific genetic regulatory architecture of skeletal muscle is highly enriched in muscle stretch/super enhancers, including some that overlap T2D GWAS variants. In one such example, T2D risk alleles residing in a muscle stretch/super enhancer are linked to increased expression and alternative splicing of muscle-specific isoforms of ANK1.


Assuntos
Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Estudo de Associação Genômica Ampla , Músculo Esquelético/metabolismo , Alelos , Epigenômica , Feminino , Regulação da Expressão Gênica , Predisposição Genética para Doença , Humanos , Masculino , Polimorfismo de Nucleotídeo Único , RNA Mensageiro , Análise de Sequência de RNA
11.
Mol Neurobiol ; 53(1): 423-435, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25465239

RESUMO

SH-SY5Y cells, a neuroblastoma cell line that is a well-established model system to study the initial phases of neuronal differentiation, have been used in studies to elucidate the mechanisms of neuronal differentiation. In the present study, we investigated alterations of gene expression in SH-SY5Y cells during neuronal differentiation mediated by retinoic acid (RA) treatment. We evaluated important pathways involving nuclear factor kappa B (NF-κB), nuclear E2-related factor 2 (Nrf2), glycolytic, and p53 during neuronal differentiation. We also investigated the involvement of reactive oxygen species (ROS) in modulating the gene expression profile of those pathways by antioxidant co-treatment with Trolox®, a hydrophilic analogue of α-tocopherol. We found that RA treatment increases levels of gene expression of NF-κB, glycolytic, and antioxidant pathway genes during neuronal differentiation of SH-SY5Y cells. We also found that ROS production induced by RA treatment in SH-SY5Y cells is involved in gene expression profile alterations, chiefly in NF-κB, and glycolytic pathways. Antioxidant co-treatment with Trolox® reversed the effects mediated by RA NF-κB, and glycolytic pathways gene expression. Interestingly, co-treatment with Trolox® did not reverse the effects in antioxidant gene expression mediated by RA in SH-SY5Y. To confirm neuronal differentiation, we quantified endogenous levels of tyrosine hydroxylase, a recognized marker of neuronal differentiation. Our data suggest that during neuronal differentiation mediated by RA, changes in profile gene expression of important pathways occur. These alterations are in part mediated by ROS production. Therefore, our results reinforce the importance in understanding the mechanism by which RA induces neuronal differentiation in SH-SY5Y cells, principally due this model being commonly used as a neuronal cell model in studies of neuronal pathologies.


Assuntos
Diferenciação Celular/efeitos dos fármacos , Perfilação da Expressão Gênica , Glicólise/genética , Fator 2 Relacionado a NF-E2/genética , NF-kappa B/genética , Neurônios/citologia , Tretinoína/farmacologia , Proteína Supressora de Tumor p53/genética , Diferenciação Celular/genética , Linhagem Celular Tumoral , Regulação da Expressão Gênica/efeitos dos fármacos , Redes Reguladoras de Genes/efeitos dos fármacos , Glicólise/efeitos dos fármacos , Humanos , Fator 2 Relacionado a NF-E2/metabolismo , NF-kappa B/metabolismo , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Proteína Supressora de Tumor p53/metabolismo
12.
PLoS One ; 8(12): e82457, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24349289

RESUMO

Neuroblastoma is the most common extracranial tumor and a major cause of infant cancer mortality worldwide. Despite its importance, little is known about its molecular mechanisms. A striking feature of this tumor is its clinical heterogeneity. Possible outcomes range from aggressive invasion to other tissues, causing patient death, to spontaneous disease regression or differentiation into benign ganglioneuromas. Several efforts have been made in order to find tumor progression markers. In this work, we have reconstructed the neuroblastoma regulatory network using an information-theoretic approach in order to find genes involved in tumor progression and that could be used as outcome predictors or as therapeutic targets. We have queried the reconstructed neuroblastoma regulatory network using an aggressive neuroblastoma metastasis gene signature in order to find its master regulators (MRs). MRs expression profiles were then investigated in other neuroblastoma datasets so as to detect possible clinical significance. Our analysis pointed MAX as one of the MRs of neuroblastoma progression. We have found that higher MAX expression correlated with favorable patient outcomes. We have also found that MAX expression and protein levels were increased during neuroblastoma SH-SY5Y cells differentiation. We propose that MAX is involved in neuroblastoma progression, possibly increasing cell differentiation by means of regulating the availability of MYC:MAX heterodimers. This mechanism is consistent with the results found in our SH-SY5Y differentiation protocol, suggesting that MAX has a more central role in these cells differentiation than previously reported. Overexpression of MAX has been identified as anti-tumorigenic in other works, but, to our knowledge, this is the first time that the link between the expression of this gene and malignancy was verified under physiological conditions.


Assuntos
Fatores de Transcrição de Zíper de Leucina Básica/genética , Regulação Neoplásica da Expressão Gênica , Redes Reguladoras de Genes , Neuroblastoma/genética , Neuroblastoma/patologia , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/genética , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Linhagem Celular Tumoral , Análise por Conglomerados , Progressão da Doença , Perfilação da Expressão Gênica , Humanos , Modelos Biológicos , Neuroblastoma/metabolismo , Neuroblastoma/mortalidade , Transdução de Sinais , Células Tumorais Cultivadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...