Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Tree Physiol ; 32(10): 1237-58, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22989738

RESUMO

Intra-annual nutrient (nitrogen, phosphorus, potassium, calcium and magnesium) flux was quantified for Pinus taeda L. at a nutrient-poor, well-drained sandy site in Scotland County, NC, USA where a 2 × 2 factorial of irrigation and nutrition was applied in four replications in a 10-year-old stand with 1200 stems ha(-1). Treatments were applied with the goal of providing optimum nutrition (no nutritional deficiencies) and water availability. Component (foliage, branch, stem and root) nutrient content was estimated monthly for 2 years using nutrient concentration and phenology assessments combined with destructive harvests. Positive flux values indicated nutrient accumulation in the trees while negative values indicated nutrient loss from the trees. Fertilization significantly increased nitrogen, phosphorus, potassium, calcium and magnesium flux 140%, on average, over non-fertilized. Irrigation significantly increased calcium flux 28% while there was no significant irrigation effect on nitrogen, phosphorus, potassium or magnesium. Maximum nutrient fluxes (kg ha(-1) day(-1)) for non-fertilized and fertilized stands were 0.36 and 1.05 for nitrogen, 0.042 and 0.095 for phosphorus, 0.13 and 0.51 for potassium, 0.27 and 0.42 for calcium, and 0.04 and 0.12 for magnesium, respectively. Maximum flux was coincident with ephemeral tissue (foliage and fine root) development and likely would be higher in stands with more foliage than those observed in this study (projected leaf area indices were 1.5 and 3.0 for the non-fertilized and fertilized stands). Minimum nutrient fluxes (kg ha(-1) day(-1)) for non-fertilized and fertilized stands were -0.18 and -0.42 for nitrogen, -0.029 and -0.070 for phosphorus, -0.05 and -0.18 for potassium, -0.04 and -0.05 for calcium, and -0.02 and -0.03 for magnesium, respectively. Minimum fluxes were typically observed in the dormant season and were linked to foliage senescence and branch death. Foliage and branch component nutrient contents were out of phase for nitrogen, phosphorus, potassium and magnesium, indicating nutrient retranslocation and storage in branches prior to foliage development and after foliage senescence. In contrast to current operational fertilizer programs which often target winter application these data suggest the best application times would be during foliage development.


Assuntos
Pinus taeda/metabolismo , Irrigação Agrícola , Transporte Biológico , Biomassa , Cálcio/análise , Cálcio/metabolismo , Fertilizantes , Magnésio/análise , Magnésio/metabolismo , Nitrogênio/análise , Nitrogênio/metabolismo , North Carolina , Fenótipo , Fósforo/análise , Fósforo/metabolismo , Pinus taeda/crescimento & desenvolvimento , Casca de Planta/crescimento & desenvolvimento , Casca de Planta/metabolismo , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Caules de Planta/crescimento & desenvolvimento , Caules de Planta/metabolismo , Potássio/análise , Potássio/metabolismo , Árvores , Água/metabolismo
2.
Tree Physiol ; 28(7): 1083-98, 2008 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-18450573

RESUMO

We quantified nitrogen (N), phosphorus (P), potassium (K), calcium (Ca) and magnesium (Mg) content, use (nutrient amount for one growth year), retranslocation (nutrients recycled before foliage senescence), uptake (use minus retranslocation), volume production per unit of uptake and fertilizer-uptake efficiency (percent applied taken up) in a 2 x 2 (nutrient and water) factorial experiment replicated four times in an 8-year-old loblolly pine (Pinus taeda L.) stand growing on a nutrient-poor sandy soil in Scotland County, North Carolina, USA. Over 14 years, we applied 1140, 168, 393, 168 and 146 kg ha(-1) of elemental N, P, K, Ca and Mg fertilizer, respectively, and an average of 710 mm year(-1) of irrigation. All plots received complete vegetation control. Fertilization about doubled tissue N, P, K and Mg contents at age 21, whereas irrigation resulted in smaller increases in nutrient contents. Maximum annual uptake was 101, 9.3, 44, 37 and 13 kg ha(-1) year(-1) and volume production per unit of nutrient uptake was 0.35, 3.5, 0.66, 1.1 and 3.1 m(3) kg(-1), for N, P, K, Ca and Mg, respectively. Irrigated plots had greater volume production per unit of N, P, K and Mg uptake than control plots, likely because irrigation allowed photosynthesis to continue during dry periods. Fertilized plus irrigated plots had less volume production per unit of these elements than the fertilized plots either because nutrient uptake exceeded the requirement for optimum growth or because available water (rainfall plus irrigation) was insufficient for the leaf area achieved with fertilization. At age 19, fertilizer-uptake efficiencies for N, P, K, Ca and Mg were 53, 24, 62, 57 and 39%, respectively, and increased with irrigation to 68, 36, 78, 116 and 55%, respectively. The scale of fertilizer uptake was likely a result of low native site nutrient availability, study longevity, measurement of all tissue components on site, a comprehensive assessment of coarse roots, and the 3-m rooting depth. Ecosystem nitrogen retention (applied nitrogen found in living plant material, litter fall and soil to 150-cm depth) was estimated at 79% at age 17, a value that would likely be greater when including soil nitrogen to rooting depth and calculating retention at age 21 when the study ended. The ecosystem retention value provides evidence that intensive site resource management can be accomplished with low likelihood of applied materials moving offsite.


Assuntos
Pinus taeda/crescimento & desenvolvimento , Pinus taeda/metabolismo , Transporte Biológico , Cálcio/metabolismo , Fertilizantes , Magnésio/metabolismo , Nitrogênio/metabolismo , North Carolina , Fósforo/metabolismo , Folhas de Planta/metabolismo , Potássio/metabolismo , Fatores de Tempo
3.
New Phytol ; 154(2): 389-398, 2002 May.
Artigo em Inglês | MEDLINE | ID: mdl-33873440

RESUMO

• Availability of growth limiting resources may alter root dynamics in forest ecosystems, possibly affecting the land-atmosphere exchange of carbon. This was evaluated for a commercially important southern timber species by installing a factorial experiment of fertilization and irrigation treatments in an 8-yr-old loblolly pine (Pinus taeda) plantation. • After 3 yr of growth, production and turnover of fine, coarse and mycorrhizal root length was observed using minirhizotrons, and compared with stem growth and foliage development. • Fertilization increased net production of fine roots and mycorrhizal roots, but did not affect coarse roots. Fine roots had average lifespans of 166 d, coarse roots 294 d and mycorrhizal roots 507 d. Foliage growth rate peaked in late spring and declined over the remainder of the growing season, whereas fine roots experienced multiple growth flushes in the spring, summer and fall. • We conclude that increased nutrient availability might increase carbon input to soils through enhanced fine root turnover. However, this will depend on the extent to which mycorrhizal root formation is affected, as these mycorrhizal roots have much longer average lifespans than fine and coarse roots.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA