Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PNAS Nexus ; 2(12): pgad403, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38077689

RESUMO

Immunocompromised patients often fail to raise protective vaccine-induced immunity against the global emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants. Although monoclonal antibodies have been authorized for clinical use, most have lost their ability to potently neutralize the evolving Omicron subvariants. Thus, there is an urgent need for treatment strategies that can provide protection against these and emerging SARS-CoV-2 variants to prevent the development of severe coronavirus disease 2019. Here, we report on the design and characterization of a long-acting viral entry-blocking angiotensin-converting enzyme 2 (ACE2) dimeric fusion molecule. Specifically, a soluble truncated human dimeric ACE2 variant, engineered for improved binding to the receptor-binding domain of SARS-CoV-2, was fused with human albumin tailored for favorable engagement of the neonatal fragment crystallizable receptor (FcRn), which resulted in enhanced plasma half-life and allowed for needle-free transmucosal delivery upon nasal administration in human FcRn-expressing transgenic mice. Importantly, the dimeric ACE2-fused albumin demonstrated potent neutralization of SARS-CoV-2 immune escape variants.

2.
Nat Commun ; 14(1): 3583, 2023 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-37328472

RESUMO

COVID-19 has stimulated the rapid development of new antibody and small molecule therapeutics to inhibit SARS-CoV-2 infection. Here we describe a third antiviral modality that combines the drug-like advantages of both. Bicycles are entropically constrained peptides stabilized by a central chemical scaffold into a bi-cyclic structure. Rapid screening of diverse bacteriophage libraries against SARS-CoV-2 Spike yielded unique Bicycle binders across the entire protein. Exploiting Bicycles' inherent chemical combinability, we converted early micromolar hits into nanomolar viral inhibitors through simple multimerization. We also show how combining Bicycles against different epitopes into a single biparatopic agent allows Spike from diverse variants of concern (VoC) to be targeted (Alpha, Beta, Delta and Omicron). Finally, we demonstrate in both male hACE2-transgenic mice and Syrian golden hamsters that both multimerized and biparatopic Bicycles reduce viraemia and prevent host inflammation. These results introduce Bicycles as a potential antiviral modality to tackle new and rapidly evolving viruses.


Assuntos
COVID-19 , SARS-CoV-2 , Masculino , Animais , Cricetinae , Camundongos , Antivirais/farmacologia , Peptídeos/farmacologia , Anticorpos , Mesocricetus , Camundongos Transgênicos , Glicoproteína da Espícula de Coronavírus/genética
3.
EMBO Rep ; 24(5): e56275, 2023 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-36970882

RESUMO

HIV-1 uses inositol hexakisphosphate (IP6) to build a metastable capsid capable of delivering its genome into the host nucleus. Here, we show that viruses that are unable to package IP6 lack capsid protection and are detected by innate immunity, resulting in the activation of an antiviral state that inhibits infection. Disrupting IP6 enrichment results in defective capsids that trigger cytokine and chemokine responses during infection of both primary macrophages and T-cell lines. Restoring IP6 enrichment with a single mutation rescues the ability of HIV-1 to infect cells without being detected. Using a combination of capsid mutants and CRISPR-derived knockout cell lines for RNA and DNA sensors, we show that immune sensing is dependent upon the cGAS-STING axis and independent of capsid detection. Sensing requires the synthesis of viral DNA and is prevented by reverse transcriptase inhibitors or reverse transcriptase active-site mutation. These results demonstrate that IP6 is required to build capsids that can successfully transit the cell and avoid host innate immune sensing.


Assuntos
Capsídeo , Infecções por HIV , Humanos , Capsídeo/metabolismo , Interações Hospedeiro-Patógeno , Imunidade Inata , Nucleotidiltransferases/genética , Nucleotidiltransferases/metabolismo , Proteínas de Membrana/metabolismo
4.
Nat Struct Mol Biol ; 30(3): 370-382, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36624347

RESUMO

HIV-1 Gag metamorphoses inside each virion, from an immature lattice that forms during viral production to a mature capsid that drives infection. Here we show that the immature lattice is required to concentrate the cellular metabolite inositol hexakisphosphate (IP6) into virions to catalyze mature capsid assembly. Disabling the ability of HIV-1 to enrich IP6 does not prevent immature lattice formation or production of the virus. However, without sufficient IP6 molecules inside each virion, HIV-1 can no longer build a stable capsid and fails to become infectious. IP6 cannot be replaced by other inositol phosphate (IP) molecules, as substitution with other IPs profoundly slows mature assembly kinetics and results in virions with gross morphological defects. Our results demonstrate that while HIV-1 can become independent of IP6 for immature assembly, it remains dependent upon the metabolite for mature capsid formation.


Assuntos
HIV-1 , HIV-1/metabolismo , Capsídeo/metabolismo , Montagem de Vírus , Proteínas do Capsídeo/metabolismo , Ácido Fítico/metabolismo , Vírion
5.
Viruses ; 14(8)2022 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-35893676

RESUMO

TRIM7 catalyzes the ubiquitination of multiple substrates with unrelated biological functions. This cross-reactivity is at odds with the specificity usually displayed by enzymes, including ubiquitin ligases. Here we show that TRIM7's extreme substrate promiscuity is due to a highly unusual binding mechanism, in which the PRYSPRY domain captures any ligand with a C-terminal helix that terminates in a hydrophobic residue followed by a glutamine. Many of the non-structural proteins found in RNA viruses contain C-terminal glutamines as a result of polyprotein cleavage by 3C protease. This viral processing strategy generates novel substrates for TRIM7 and explains its ability to inhibit Coxsackie virus and norovirus replication. In addition to viral proteins, cellular proteins such as glycogenin have evolved C-termini that make them a TRIM7 substrate. The 'helix-ΦQ' degron motif recognized by TRIM7 is reminiscent of the N-end degron system and is found in ~1% of cellular proteins. These features, together with TRIM7's restricted tissue expression and lack of immune regulation, suggest that viral restriction may not be its physiological function.


Assuntos
Infecções por Caliciviridae , Glutamina , Proteínas com Motivo Tripartido , Ubiquitina-Proteína Ligases , Proteases Virais 3C , Enterovirus , Humanos , Norovirus , Proteínas com Motivo Tripartido/genética , Ubiquitina-Proteína Ligases/metabolismo , Proteínas Virais/genética
6.
Front Immunol ; 12: 748291, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34867975

RESUMO

Precision monitoring of antibody responses during the COVID-19 pandemic is increasingly important during large scale vaccine rollout and rise in prevalence of Severe Acute Respiratory Syndrome-related Coronavirus-2 (SARS-CoV-2) variants of concern (VOC). Equally important is defining Correlates of Protection (CoP) for SARS-CoV-2 infection and COVID-19 disease. Data from epidemiological studies and vaccine trials identified virus neutralising antibodies (Nab) and SARS-CoV-2 antigen-specific (notably RBD and S) binding antibodies as candidate CoP. In this study, we used the World Health Organisation (WHO) international standard to benchmark neutralising antibody responses and a large panel of binding antibody assays to compare convalescent sera obtained from: a) COVID-19 patients; b) SARS-CoV-2 seropositive healthcare workers (HCW) and c) seronegative HCW. The ultimate aim of this study is to identify biomarkers of humoral immunity that could be used to differentiate severe from mild or asymptomatic SARS-CoV-2 infections. Some of these biomarkers could be used to define CoP in further serological studies using samples from vaccination breakthrough and/or re-infection cases. Whenever suitable, the antibody levels of the samples studied were expressed in International Units (IU) for virus neutralisation assays or in Binding Antibody Units (BAU) for ELISA tests. In this work we used commercial and non-commercial antibody binding assays; a lateral flow test for detection of SARS-CoV-2-specific IgG/IgM; a high throughput multiplexed particle flow cytometry assay for SARS-CoV-2 Spike (S), Nucleocapsid (N) and Receptor Binding Domain (RBD) proteins); a multiplex antigen semi-automated immuno-blotting assay measuring IgM, IgA and IgG; a pseudotyped microneutralisation test (pMN) and an electroporation-dependent neutralisation assay (EDNA). Our results indicate that overall, severe COVID-19 patients showed statistically significantly higher levels of SARS-CoV-2-specific neutralising antibodies (average 1029 IU/ml) than those observed in seropositive HCW with mild or asymptomatic infections (379 IU/ml) and that clinical severity scoring, based on WHO guidelines was tightly correlated with neutralisation and RBD/S antibodies. In addition, there was a positive correlation between severity, N-antibody assays and intracellular virus neutralisation.


Assuntos
COVID-19/imunologia , Convalescença , Imunidade Humoral , SARS-CoV-2/imunologia , Anticorpos Neutralizantes/sangue , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/sangue , Anticorpos Antivirais/imunologia , Antígenos Virais/imunologia , Biomarcadores/sangue , COVID-19/sangue , COVID-19/diagnóstico , Teste Sorológico para COVID-19/normas , Calibragem , Humanos , Isotipos de Imunoglobulinas/sangue , Isotipos de Imunoglobulinas/imunologia , Padrões de Referência , Índice de Gravidade de Doença
7.
Nature ; 599(7883): 114-119, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34488225

RESUMO

The B.1.617.2 (Delta) variant of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was first identified in the state of Maharashtra in late 2020 and spread throughout India, outcompeting pre-existing lineages including B.1.617.1 (Kappa) and B.1.1.7 (Alpha)1. In vitro, B.1.617.2 is sixfold less sensitive to serum neutralizing antibodies from recovered individuals, and eightfold less sensitive to vaccine-elicited antibodies, compared with wild-type Wuhan-1 bearing D614G. Serum neutralizing titres against B.1.617.2 were lower in ChAdOx1 vaccinees than in BNT162b2 vaccinees. B.1.617.2 spike pseudotyped viruses exhibited compromised sensitivity to monoclonal antibodies to the receptor-binding domain and the amino-terminal domain. B.1.617.2 demonstrated higher replication efficiency than B.1.1.7 in both airway organoid and human airway epithelial systems, associated with B.1.617.2 spike being in a predominantly cleaved state compared with B.1.1.7 spike. The B.1.617.2 spike protein was able to mediate highly efficient syncytium formation that was less sensitive to inhibition by neutralizing antibody, compared with that of wild-type spike. We also observed that B.1.617.2 had higher replication and spike-mediated entry than B.1.617.1, potentially explaining the B.1.617.2 dominance. In an analysis of more than 130 SARS-CoV-2-infected health care workers across three centres in India during a period of mixed lineage circulation, we observed reduced ChAdOx1 vaccine effectiveness against B.1.617.2 relative to non-B.1.617.2, with the caveat of possible residual confounding. Compromised vaccine efficacy against the highly fit and immune-evasive B.1.617.2 Delta variant warrants continued infection control measures in the post-vaccination era.


Assuntos
Evasão da Resposta Imune , SARS-CoV-2/crescimento & desenvolvimento , SARS-CoV-2/imunologia , Replicação Viral/imunologia , Anticorpos Neutralizantes/imunologia , Vacinas contra COVID-19/imunologia , Fusão Celular , Linhagem Celular , Feminino , Pessoal de Saúde , Humanos , Índia , Cinética , Masculino , Glicoproteína da Espícula de Coronavírus/metabolismo , Vacinação
8.
EMBO J ; 40(17): e108588, 2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-34323299

RESUMO

The humoral immune response to SARS-CoV-2 results in antibodies against spike (S) and nucleoprotein (N). However, whilst there are widely available neutralization assays for S antibodies, there is no assay for N-antibody activity. Here, we present a simple in vitro method called EDNA (electroporated-antibody-dependent neutralization assay) that provides a quantitative measure of N-antibody activity in unpurified serum from SARS-CoV-2 convalescents. We show that N antibodies neutralize SARS-CoV-2 intracellularly and cell-autonomously but require the cytosolic Fc receptor TRIM21. Using EDNA, we show that low N-antibody titres can be neutralizing, whilst some convalescents possess serum with high titres but weak activity. N-antibody and N-specific T-cell activity correlates within individuals, suggesting N antibodies may protect against SARS-CoV-2 by promoting antigen presentation. This work highlights the potential benefits of N-based vaccines and provides an in vitro assay to allow the antibodies they induce to be tested.


Assuntos
Anticorpos Neutralizantes/isolamento & purificação , Anticorpos Antivirais/isolamento & purificação , COVID-19/sangue , SARS-CoV-2/isolamento & purificação , Anticorpos Neutralizantes/sangue , Anticorpos Antivirais/sangue , COVID-19/virologia , Humanos , Nucleoproteínas/sangue , Nucleoproteínas/imunologia , SARS-CoV-2/patogenicidade
9.
FEBS Lett ; 595(18): 2323-2340, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34331769

RESUMO

The COVID-19 pandemic, caused by the SARS-CoV-2 coronavirus, has triggered a worldwide health emergency. Here, we show that ferritin-like Dps from hyperthermophilic Sulfolobus islandicus, covalently coupled with SARS-CoV-2 antigens via the SpyCatcher system, forms stable multivalent dodecameric vaccine nanoparticles that remain intact even after lyophilisation. Immunisation experiments in mice demonstrated that the SARS-CoV-2 receptor binding domain (RBD) coupled to Dps (RBD-S-Dps) elicited a higher antibody titre and an enhanced neutralising antibody response compared to monomeric RBD. A single immunisation with RBD-S-Dps completely protected hACE2-expressing mice from serious illness and led to viral clearance from the lungs upon SARS-CoV-2 infection. Our data highlight that multimerised SARS-CoV-2 subunit vaccines are a highly efficacious modality, particularly when combined with an ultra-stable scaffold.


Assuntos
Enzima de Conversão de Angiotensina 2/imunologia , Vacinas contra COVID-19/imunologia , COVID-19/prevenção & controle , Receptores Virais/imunologia , Glicoproteína da Espícula de Coronavírus/imunologia , Animais , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Proteínas de Bactérias/química , Vacinas contra COVID-19/administração & dosagem , Vacinas contra COVID-19/química , Proteínas de Ligação a DNA/química , Ferritinas/química , Humanos , Imunização , Camundongos , Nanopartículas , Domínios Proteicos , Multimerização Proteica , Glicoproteína da Espícula de Coronavírus/química , Sulfolobus
10.
PLoS Pathog ; 17(1): e1009246, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33493182

RESUMO

Severe Acute Respiratory Syndrome coronavirus 2 (SARS-CoV-2) infects cells by binding to the host cell receptor ACE2 and undergoing virus-host membrane fusion. Fusion is triggered by the protease TMPRSS2, which processes the viral Spike (S) protein to reveal the fusion peptide. SARS-CoV-2 has evolved a multibasic site at the S1-S2 boundary, which is thought to be cleaved by furin in order to prime S protein for TMPRSS2 processing. Here we show that CRISPR-Cas9 knockout of furin reduces, but does not prevent, the production of infectious SARS-CoV-2 virus. Comparing S processing in furin knockout cells to multibasic site mutants reveals that while loss of furin substantially reduces S1-S2 cleavage it does not prevent it. SARS-CoV-2 S protein also mediates cell-cell fusion, potentially allowing virus to spread virion-independently. We show that loss of furin in either donor or acceptor cells reduces, but does not prevent, TMPRSS2-dependent cell-cell fusion, unlike mutation of the multibasic site that completely prevents syncytia formation. Our results show that while furin promotes both SARS-CoV-2 infectivity and cell-cell spread it is not essential, suggesting furin inhibitors may reduce but not abolish viral spread.


Assuntos
Fusão Celular , Furina/genética , Glicoproteína da Espícula de Coronavírus/química , Internalização do Vírus , Animais , COVID-19 , Sistemas CRISPR-Cas , Chlorocebus aethiops , Técnicas de Inativação de Genes , Células HEK293 , Humanos , Estrutura Terciária de Proteína , SARS-CoV-2 , Serina Endopeptidases , Células Vero
11.
Nat Commun ; 11(1): 4940, 2020 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-33009411

RESUMO

The HUSH complex represses retroviruses, transposons and genes to maintain the integrity of vertebrate genomes. HUSH regulates deposition of the epigenetic mark H3K9me3, but how its three core subunits - TASOR, MPP8 and Periphilin - contribute to assembly and targeting of the complex remains unknown. Here, we define the biochemical basis of HUSH assembly and find that its modular architecture resembles the yeast RNA-induced transcriptional silencing complex. TASOR, the central HUSH subunit, associates with RNA processing components. TASOR is required for H3K9me3 deposition over LINE-1 repeats and repetitive exons in transcribed genes. In the context of previous studies, this suggests that an RNA intermediate is important for HUSH activity. We dissect the TASOR and MPP8 domains necessary for transgene repression. Structure-function analyses reveal TASOR bears a catalytically-inactive PARP domain necessary for targeted H3K9me3 deposition. We conclude that TASOR is a multifunctional pseudo-PARP that directs HUSH assembly and epigenetic regulation of repetitive genomic targets.


Assuntos
Elementos de DNA Transponíveis/genética , Epigênese Genética , Complexos Multiproteicos/metabolismo , Proteínas Nucleares/metabolismo , Poli(ADP-Ribose) Polimerases/metabolismo , Sequência de Aminoácidos , Antígenos de Neoplasias/metabolismo , Sítios de Ligação , Éxons/genética , Genoma , Células HEK293 , Células HeLa , Histonas/metabolismo , Humanos , Lisina/metabolismo , Espectroscopia de Ressonância Magnética , Metilação , NAD/metabolismo , Proteínas Nucleares/química , Fosfoproteínas/metabolismo , Ligação Proteica , Domínios Proteicos , RNA/metabolismo , Processamento Pós-Transcricional do RNA , Transcrição Gênica
12.
Cell Stem Cell ; 27(6): 951-961.e5, 2020 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-33113348

RESUMO

Coronavirus disease 2019 (COVID-19), caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus, leads to respiratory symptoms that can be fatal. However, neurological symptoms have also been observed in some patients. The cause of these complications is currently unknown. Here, we use human-pluripotent-stem-cell-derived brain organoids to examine SARS-CoV-2 neurotropism. We find expression of viral receptor ACE2 in mature choroid plexus cells expressing abundant lipoproteins, but not in neurons or other cell types. We challenge organoids with SARS-CoV-2 spike pseudovirus and live virus to demonstrate viral tropism for choroid plexus epithelial cells but little to no infection of neurons or glia. We find that infected cells are apolipoprotein- and ACE2-expressing cells of the choroid plexus epithelial barrier. Finally, we show that infection with SARS-CoV-2 damages the choroid plexus epithelium, leading to leakage across this important barrier that normally prevents entry of pathogens, immune cells, and cytokines into cerebrospinal fluid and the brain.


Assuntos
Barreira Hematoencefálica/virologia , Plexo Corióideo/virologia , SARS-CoV-2/fisiologia , Enzima de Conversão de Angiotensina 2/metabolismo , Animais , Chlorocebus aethiops , Células HEK293 , Humanos , Modelos Biológicos , Organoides/virologia , Células Vero , Tropismo Viral , Internalização do Vírus
13.
Nucleic Acids Res ; 48(18): 10313-10328, 2020 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-32976585

RESUMO

Transcription of integrated DNA from viruses or transposable elements is tightly regulated to prevent pathogenesis. The Human Silencing Hub (HUSH), composed of Periphilin, TASOR and MPP8, silences transcriptionally active viral and endogenous transgenes. HUSH recruits effectors that alter the epigenetic landscape and chromatin structure, but how HUSH recognizes target loci and represses their expression remains unclear. We identify the physicochemical properties of Periphilin necessary for HUSH assembly and silencing. A disordered N-terminal domain (NTD) and structured C-terminal domain are essential for silencing. A crystal structure of the Periphilin-TASOR minimal core complex shows Periphilin forms an α-helical homodimer, bound by a single TASOR molecule. The NTD forms insoluble aggregates through an arginine/tyrosine-rich sequence reminiscent of low-complexity regions from self-associating RNA-binding proteins. Residues required for TASOR binding and aggregation were required for HUSH-dependent silencing and genome-wide deposition of repressive mark H3K9me3. The NTD was functionally complemented by low-complexity regions from certain RNA-binding proteins and proteins that form condensates or fibrils. Our work suggests the associative properties of Periphilin promote HUSH aggregation at target loci.


Assuntos
Antígenos de Neoplasias/ultraestrutura , Proteínas Nucleares/ultraestrutura , Proteínas de Ligação a RNA/química , Transcrição Gênica , Antígenos de Neoplasias/química , Antígenos de Neoplasias/genética , Cristalografia por Raios X , Elementos de DNA Transponíveis/genética , Epigênese Genética/genética , Inativação Gênica , Humanos , Proteínas Nucleares/química , Proteínas Nucleares/genética , Fosfoproteínas/química , Fosfoproteínas/genética , Agregados Proteicos/genética , Ligação Proteica/genética , Conformação Proteica em alfa-Hélice , Domínios Proteicos/genética , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/ultraestrutura , Vírus/genética
14.
FEBS J ; 286(8): 1543-1560, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30715798

RESUMO

Double-stranded RNA (dsRNA) is a potent proinflammatory signature of viral infection and is sensed primarily by RIG-I-like receptors (RLRs). Oligomerization of RLRs following binding to cytosolic dsRNA activates and nucleates self-assembly of the mitochondrial antiviral-signaling protein (MAVS). In the current signaling model, the caspase recruitment domains of MAVS form helical fibrils that self-propagate like prions to promote signaling complex assembly. However, there is no conclusive evidence that MAVS forms fibrils in cells or with the transmembrane anchor present. We show here with super-resolution light microscopy that MAVS activation by dsRNA induces mitochondrial membrane remodeling. Quantitative image analysis at imaging resolutions as high as 32 nm shows that in the cellular context, MAVS signaling complexes and the fibrils within them are smaller than 80 nm. The transmembrane domain of MAVS is required for its membrane remodeling, interferon signaling, and proapoptotic activities. We conclude that membrane tethering of MAVS restrains its polymerization and contributes to mitochondrial remodeling and apoptosis upon dsRNA sensing.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Interferon beta/metabolismo , Membranas Mitocondriais/metabolismo , Células 3T3/virologia , Proteínas Adaptadoras de Transdução de Sinal/química , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Morte Celular/fisiologia , Citosol/fisiologia , Fibroblastos/metabolismo , Helicase IFIH1 Induzida por Interferon/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Camundongos , Camundongos Knockout , Microscopia/métodos , Membranas Mitocondriais/virologia , Proteínas do Complexo de Importação de Proteína Precursora Mitocondrial , Domínios Proteicos , RNA de Cadeia Dupla/metabolismo , Receptores de Superfície Celular/metabolismo , Transdução de Sinais , Análise de Célula Única/métodos , Febre do Nilo Ocidental/metabolismo
15.
J Virol ; 91(2)2017 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-27852850

RESUMO

The tegument of herpesviruses is a highly complex structural layer between the nucleocapsid and the envelope of virions. Tegument proteins play both structural and regulatory functions during replication and spread, but the interactions and functions of many of these proteins are poorly understood. Here we focus on two tegument proteins from herpes simplex virus 1 (HSV-1), pUL7 and pUL51, which have homologues in all other herpesviruses. We have now identified that HSV-1 pUL7 and pUL51 form a stable and direct protein-protein interaction, their expression levels rely on the presence of each other, and they function as a complex in infected cells. We demonstrate that expression of the pUL7-pUL51 complex is important for efficient HSV-1 assembly and plaque formation. Furthermore, we also discovered that the pUL7-pUL51 complex localizes to focal adhesions at the plasma membrane in both infected cells and in the absence of other viral proteins. The expression of pUL7-pUL51 is important to stabilize focal adhesions and maintain cell morphology in infected cells and cells infected with viruses lacking pUL7 and/or pUL51 round up more rapidly than cells infected with wild-type HSV-1. Our data suggest that, in addition to the previously reported functions in virus assembly and spread for pUL51, the pUL7-pUL51 complex is important for maintaining the attachment of infected cells to their surroundings through modulating the activity of focal adhesion complexes. IMPORTANCE: Herpesviridae is a large family of highly successful human and animal pathogens. Virions of these viruses are composed of many different proteins, most of which are contained within the tegument, a complex structural layer between the nucleocapsid and the envelope within virus particles. Tegument proteins have important roles in assembling virus particles as well as modifying host cells to promote virus replication and spread. However, little is known about the function of many tegument proteins during virus replication. Our study focuses on two tegument proteins from herpes simplex virus 1 that are conserved in all herpesviruses: pUL7 and pUL51. We demonstrate that these proteins directly interact and form a functional complex that is important for both virus assembly and modulation of host cell morphology. Further, we identify for the first time that these conserved herpesvirus tegument proteins localize to focal adhesions in addition to cytoplasmic juxtanuclear membranes within infected cells.


Assuntos
DNA Helicases/metabolismo , DNA Primase/metabolismo , Herpes Simples/metabolismo , Herpes Simples/virologia , Herpesvirus Humano 1/fisiologia , Complexos Multiproteicos/metabolismo , Proteínas da Matriz Viral/metabolismo , Proteínas Virais/metabolismo , Animais , Chlorocebus aethiops , DNA Helicases/genética , DNA Primase/genética , Regulação Viral da Expressão Gênica , Células HEK293 , Herpesvirus Humano 1/ultraestrutura , Humanos , Ligação Proteica , Transporte Proteico , Células Vero , Proteínas da Matriz Viral/genética , Proteínas Virais/genética , Montagem de Vírus
16.
Traffic ; 17(1): 21-39, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26459807

RESUMO

Herpes simplex virus-1 (HSV-1) is a large enveloped DNA virus that belongs to the family of Herpesviridae. It has been recently shown that the cytoplasmic membranes that wrap the newly assembled capsids are endocytic compartments derived from the plasma membrane. Here, we show that dynamin-dependent endocytosis plays a major role in this process. Dominant-negative dynamin and clathrin adaptor AP180 significantly decrease virus production. Moreover, inhibitors targeting dynamin and clathrin lead to a decreased transport of glycoproteins to cytoplasmic capsids, confirming that glycoproteins are delivered to assembly sites via endocytosis. We also show that certain combinations of glycoproteins colocalize with each other and with the components of clathrin-dependent and -independent endocytosis pathways. Importantly, we demonstrate that the uptake of neutralizing antibodies that bind to glycoproteins when they become exposed on the cell surface during virus particle assembly leads to the production of non-infectious HSV-1. Our results demonstrate that transport of viral glycoproteins to the plasma membrane prior to endocytosis is the major route by which these proteins are localized to the cytoplasmic virus assembly compartments. This highlights the importance of endocytosis as a major protein-sorting event during HSV-1 envelopment.


Assuntos
Dinaminas/metabolismo , Endocitose , Glicoproteínas/metabolismo , Herpesvirus Humano 1/metabolismo , Proteínas Virais/metabolismo , Montagem de Vírus , Animais , Células COS , Chlorocebus aethiops , Clatrina/metabolismo , Herpesvirus Humano 1/fisiologia , Humanos , Proteínas Monoméricas de Montagem de Clatrina/metabolismo , Transporte Proteico , Células Vero
17.
Nat Commun ; 6: 5980, 2015 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-25609143

RESUMO

Herpes simplex virus type-1 (HSV-1) is one of the most widespread pathogens among humans. Although the structure of HSV-1 has been extensively investigated, the precise organization of tegument and envelope proteins remains elusive. Here we use super-resolution imaging by direct stochastic optical reconstruction microscopy (dSTORM) in combination with a model-based analysis of single-molecule localization data, to determine the position of protein layers within virus particles. We resolve different protein layers within individual HSV-1 particles using multi-colour dSTORM imaging and discriminate envelope-anchored glycoproteins from tegument proteins, both in purified virions and in virions present in infected cells. Precise characterization of HSV-1 structure was achieved by particle averaging of purified viruses and model-based analysis of the radial distribution of the tegument proteins VP16, VP1/2 and pUL37, and envelope protein gD. From this data, we propose a model of the protein organization inside the tegument.


Assuntos
Microscopia/métodos , Imagem Óptica/métodos , Simplexvirus/ultraestrutura , Animais , Anticorpos Monoclonais/química , Linhagem Celular , Microscopia Crioeletrônica , Feminino , Herpesvirus Humano 1 , Humanos , Processamento de Imagem Assistida por Computador , Queratinócitos/virologia , Camundongos , Camundongos Endogâmicos BALB C , Microscopia de Fluorescência , Proteínas Recombinantes/química , Proteínas do Envelope Viral/química , Proteínas Virais/química , Proteínas Estruturais Virais/química , Vírion/metabolismo
18.
J Virol ; 88(1): 667-78, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24173227

RESUMO

Serine is encoded by two divergent codon types, UCN and AGY, which are not interchangeable by a single nucleotide substitution. Switching between codon types therefore occurs via intermediates (threonine or cysteine) or via simultaneous tandem substitutions. Hepatitis C virus (HCV) chronically infects 2 to 3% of the global population. The highly variable glycoproteins E1 and E2 decorate the surface of the viral envelope, facilitate cellular entry, and are targets for host immunity. Comparative sequence analysis of globally sampled E1E2 genes, coupled with phylogenetic analysis, reveals the signatures of multiple archaic codon-switching events at seven highly conserved serine residues. Limited detection of intermediate phenotypes indicates that associated fitness costs restrict their fixation in divergent HCV lineages. Mutational pathways underlying codon switching were probed via reverse genetics, assessing glycoprotein functionality using multiple in vitro systems. These data demonstrate selection against intermediate phenotypes can act at the structural/functional level, with some intermediates displaying impaired virion assembly and/or decreased capacity for target cell entry. These effects act in residue/isolate-specific manner. Selection against intermediates is also provided by humoral targeting, with some intermediates exhibiting increased epitope exposure and enhanced neutralization sensitivity, despite maintaining a capacity for target cell entry. Thus, purifying selection against intermediates limits their frequencies in globally sampled strains, with divergent functional constraints at the protein level restricting the fixation of deleterious mutations. Overall our study provides an experimental framework for identification of barriers limiting viral substitutional evolution and indicates that serine codon-switching represents a genomic "fossil record" of historical purifying selection against E1E2 intermediate phenotypes.


Assuntos
Códon , Evolução Molecular , Glicoproteínas/química , Hepacivirus/química , Serina/química , Glicoproteínas/genética , Fenótipo , Filogenia
19.
J Infect Dis ; 208(11): 1888-97, 2013 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-23908491

RESUMO

BACKGROUND: The envelope glycoprotein E2 of hepatitis C virus (HCV) contains several hypervariable regions. Interestingly, 2 regions of intragenotypic hypervariability within E2 have been described as being specific to HCV subtype 3a. Based on their amino acid position in E2, they were named HVR495 and HVR575. Here, we further investigated these regions in order to better understand their role in HCV infection. METHODS: Sequences of HCV envelope glycoproteins from Pakistani patients infected with subtype 3a were cloned and compared with other subtype 3a sequences. The entry functions and the sensitivity to antibody neutralization of selected HCV glycoprotein sequences were tested in the HCV pseudotyped particles (HCVpp) system. In addition, the cell-cultured HCV system (HCVcc) was also used to confirm some of the data obtained with the HCVpp system. RESULTS: We observed interesting new features within HVR495 and HVR575 for several subtype 3a isolates. Indeed, changes in glycosylation sites were observed with the appearance of a new glycosylation site within HVR495. Importantly, HCVpp and HCVcc that contained this new HVR495 glycosylation site were less sensitive to antibody neutralization. CONCLUSIONS: We identified a new glycosylation site within the HVR495 region of HCV subtype 3a that has a protective effect against antibody neutralization.


Assuntos
Anticorpos Neutralizantes/imunologia , Epitopos/imunologia , Hepacivirus/imunologia , Anticorpos Anti-Hepatite C/imunologia , Hepatite C/virologia , Proteínas do Envelope Viral/química , Sequência de Aminoácidos , Anticorpos Monoclonais/imunologia , Linhagem Celular , Glicosilação , Hepacivirus/genética , Hepacivirus/metabolismo , Hepatite C/imunologia , Humanos , Mutação , Paquistão , RNA Viral/genética , Alinhamento de Sequência , Análise de Sequência de DNA , Tetraspanina 28/imunologia , Proteínas do Envelope Viral/imunologia , Proteínas do Envelope Viral/metabolismo
20.
Hepatology ; 55(4): 998-1007, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22121002

RESUMO

UNLABELLED: Hepatitis C virus (HCV) particles are known to be in complex with lipoproteins. As a result of this interaction, the low-density lipoprotein (LDL) receptor (LDLR) has been proposed as a potential entry factor for HCV; however, its implication in virus entry remains unclear. Here, we reinvestigated the role of the LDLR in the HCV life cycle by comparing virus entry to the mechanism of lipoprotein uptake. A small interfering RNA targeting the LDLR in Huh-7 cells reduced HCV infectivity, confirming that this receptor plays a role in the life cycle of HCV generated in cell culture. However, kinetics of internalization were much faster for lipoproteins than for infectious HCV particles. Furthermore, a decrease in HCV RNA replication was observed by blocking the LDLR with a specific antibody, and this was associated with an increase in the ratio of phosphatidylethanolamine to phosphatidylcholine in host cells. Nevertheless, a soluble form of the LDLR inhibited both HCV entry into the hepatocytes and its binding to the LDLR expressed on Chinese hamster ovary cells, suggesting a direct interaction between the HCV particle and the LDLR. Finally, we showed that modification of HCV particles by lipoprotein lipase (LPL) reduces HCV infectivity and increases HCV binding to LDLR. Importantly, LPL treatment also induced an increase in RNA internalization, suggesting that LDLR, at least in some conditions, leads to nonproductive internalization of HCV. CONCLUSION: The LDLR is not essential for infectious HCV particle entry, whereas the physiological function of this receptor is important for optimal replication of the HCV genome.


Assuntos
Hepacivirus/crescimento & desenvolvimento , Hepacivirus/fisiologia , Estágios do Ciclo de Vida/fisiologia , Receptores de LDL/fisiologia , Animais , Anticorpos/farmacologia , Células CHO , Linhagem Celular Tumoral , Cricetinae , Cricetulus , Feminino , Células HEK293 , Hepacivirus/patogenicidade , Hepatócitos/patologia , Hepatócitos/virologia , Humanos , Rim/citologia , Rim/virologia , Ovário/citologia , Ovário/virologia , RNA Viral/metabolismo , Receptores de LDL/antagonistas & inibidores , Receptores de LDL/efeitos dos fármacos , Replicação Viral/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...