Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Heliyon ; 10(3): e25255, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38327476

RESUMO

In many real-world contexts, the Internet of Things (IoT) is valued for its capacity to facilitate the smooth operation of interoperable applications and services. It is critical to ensure the accessibility and replication of IoT resources to improve the agility of these applications. As a solution, the Network Function Virtualization (NFV) paradigm is embedded into the IoT design to leverage information from various endpoint applications better and maximize resource utilization. In this study, the Shared Replication Augmenting Method (SRAM) is proposed to increase resource usage in underutilized NFVs and maintain service availability simultaneously. The regressive decision-making learning used by SRAM enables the detection of NFV needs for data and application portability across various real-time use cases. This regression method can uncover data needs and their causes, allowing for prompt answers and more efficient use of available resources. The suggested SRAM technique dynamically modifies the procedure while considering computation-less function allocations, making it suitable for various interoperable applications. It distributes root-to-service virtualization and availability based on historical use and data replication. Therefore, SRAM improves resource usage by 7.09 % with no increase in latency or delays. It also increases service availability by 10.4 %, reduces latency by 11.89 %, eliminates backlogs by 11.1 %, and reduces data repetition by 8.97 %. This study enhances resource consumption and productivity in IoT settings by offering SRAM as a viable solution. The study's results prove its potential to reduce the occurrence of replication, delay, and queues while raising the availability of services.

2.
Sensors (Basel) ; 23(24)2023 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-38139512

RESUMO

In this article, we present an innovative approach to 2D visual servoing (IBVS), aiming to guide an object to its destination while avoiding collisions with obstacles and keeping the target within the camera's field of view. A single monocular sensor's sole visual data serves as the basis for our method. The fundamental idea is to manage and control the dynamics associated with any trajectory generated in the image plane. We show that the differential flatness of the system's dynamics can be used to limit arbitrary paths based on the number of points on the object that need to be reached in the image plane. This creates a link between the current configuration and the desired configuration. The number of required points depends on the number of control inputs of the robot used and determines the dimension of the flat output of the system. For a two-wheeled mobile robot, for instance, the coordinates of a single point on the object in the image plane are sufficient, whereas, for a quadcopter with four rotating motors, the trajectory needs to be defined by the coordinates of two points in the image plane. By guaranteeing precise tracking of the chosen trajectory in the image plane, we ensure that problems of collision with obstacles and leaving the camera's field of view are avoided. Our approach is based on the principle of the inverse problem, meaning that when any point on the object is selected in the image plane, it will not be occluded by obstacles or leave the camera's field of view during movement. It is true that proposing any trajectory in the image plane can lead to non-intuitive movements (back and forth) in the Cartesian plane. In the case of backward motion, the robot may collide with obstacles as it navigates without direct vision. Therefore, it is essential to perform optimal trajectory planning that avoids backward movements. To assess the effectiveness of our method, our study focuses exclusively on the challenge of implementing the generated trajectory in the image plane within the specific context of a two-wheeled mobile robot. We use numerical simulations to illustrate the performance of the control strategy we have developed.

3.
Sensors (Basel) ; 23(17)2023 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-37688012

RESUMO

Target detection in high-contrast, multi-object images and movies is challenging. This difficulty results from different areas and objects/people having varying pixel distributions, contrast, and intensity properties. This work introduces a new region-focused feature detection (RFD) method to tackle this problem and improve target detection accuracy. The RFD method divides the input image into several smaller ones so that as much of the image as possible is processed. Each of these zones has its own contrast and intensity attributes computed. Deep recurrent learning is then used to iteratively extract these features using a similarity measure from training inputs corresponding to various regions. The target can be located by combining features from many locations that overlap. The recognized target is compared to the inputs used during training, with the help of contrast and intensity attributes, to increase accuracy. The feature distribution across regions is also used for repeated training of the learning paradigm. This method efficiently lowers false rates during region selection and pattern matching with numerous extraction instances. Therefore, the suggested method provides greater accuracy by singling out distinct regions and filtering out misleading rate-generating features. The accuracy, similarity index, false rate, extraction ratio, processing time, and others are used to assess the effectiveness of the proposed approach. The proposed RFD improves the similarity index by 10.69%, extraction ratio by 9.04%, and precision by 13.27%. The false rate and processing time are reduced by 7.78% and 9.19%, respectively.

4.
Diagnostics (Basel) ; 13(10)2023 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-37238194

RESUMO

This paper introduces a new method for real-time high-density impulsive noise elimination applied to medical images. A double process aimed at the enhancement of local data composed of Nested Filtering followed by a Morphological Operation (NFMO) is proposed. The major problem with heavily noisy images is the lack of color information around corrupted pixels. We show that the classic replacement techniques all come up against this problem, resulting in average restoration quality. We only focus on the corrupt pixel replacement phase. For the detection itself, we use the Modified Laplacian Vector Median Filter (MLVMF). To perform pixel replacement, two-window nested filtering is suggested. All noise pixels in the neighborhood scanned by the first window are investigated using the second window. This investigation phase increases the amount of useful information within the first window. The remaining useful information that the second window failed to produce in the case of a very strong connex noise concentration is then estimated using a morphological operation of dilatation. To validate the proposed method, NFMO is first evaluated on the standard image Lena with a range of 10% to 90% impulsive noise. Using the Peak Signal-to-Noise Ratio metric (PSNR), the image denoising quality obtained is compared to the performance of a wide variety of existing approaches. Several noisy medical images are subjected to a second test. In this test, the computation time and image-restoring quality of NFMO are assessed using the PSNR and the Normalized Color Difference (NCD) criteria. Finally, an optimized design for a field-programmable gate array (FPGA) is suggested to implement the proposed method for real-time processing. The proposed solution performs excellent quality restoration for images with high-density impulsive noise. When the proposed NFMO is used on the standard Lena image with 90% impulsive noise, the PSNR reaches 29.99 dB. Under the same noise conditions, NFMO completely restores medical images in an average time of 23 milliseconds with an average PSNR of 31.62 dB and an average NCD of 0.10.

5.
Diagnostics (Basel) ; 12(11)2022 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-36359581

RESUMO

In this paper, we propose a new Modified Laplacian Vector Median Filter (MLVMF) for real-time denoising complex images corrupted by "salt and pepper" impulsive noise. The method consists of two rounds with three steps each: the first round starts with the identification of pixels that may be contaminated by noise using a Modified Laplacian Filter. Then, corrupted pixels pass a neighborhood-based validation test. Finally, the Vector Median Filter is used to replace noisy pixels. The MLVMF uses a 5 × 5 window to observe the intensity variations around each pixel of the image with a rotation step of π/8 while the classic Laplacian filters often use rotation steps of π/2 or π/4. We see better identification of noise-corrupted pixels thanks to this rotation step refinement. Despite this advantage, a high percentage of the impulsive noise may cause two or more corrupted pixels (with the same intensity) to collide, preventing the identification of noise-corrupted pixels. A second round is then necessary using a second set of filters, still based on the Laplacian operator, but allowing focusing only on the collision phenomenon. To validate our method, MLVMF is firstly tested on standard images, with a noise percentage varying from 3% to 30%. Obtained performances in terms of processing time, as well as image restoration quality through the PSNR (Peak Signal to Noise Ratio) and the NCD (Normalized Color Difference) metrics, are compared to the performances of VMF (Vector Median Filter), VMRHF (Vector Median-Rational Hybrid Filter), and MSMF (Modified Switching Median Filter). A second test is performed on several noisy chest x-ray images used in cardiovascular disease diagnosis as well as COVID-19 diagnosis. The proposed method shows a very good quality of restoration on this type of image, particularly when the percentage of noise is high. The MLVMF provides a high PSNR value of 5.5% and a low NCD value of 18.2%. Finally, an optimized Field-Programmable Gate Array (FPGA) design is proposed to implement the proposed method for real-time processing. The proposed hardware implementation allows an execution time equal to 9 ms per 256 × 256 color image.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...