Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Immunol ; 11: 692, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32391011

RESUMO

Changing the immune responses to allergens is the cornerstone of allergen immunotherapy. Allergen-specific immunotherapy that consists of repeated administration of increasing doses of allergen extract is potentially curative. The major inconveniences of allergen-specific immunotherapy include failure to modify immune responses, long-term treatment leading to non-compliance and the potential for developing life-threating anaphylaxis. Here we investigated the effect of a novel liposomal formulation carrying low dose of allergen combined with CpG-ODN, a synthetic TLR9 agonist, on established allergic lung inflammation. We found that challenge with allergen (OVA) encapsulated in cationic liposome induced significantly less severe cutaneous anaphylactic reaction. Notably, short-term treatment (three doses) with a liposomal formulation containing co-encapsulated allergen plus CpG-ODN, but not allergen or CpG-ODN alone, reversed an established allergic lung inflammation and provided long-term protection. This liposomal formulation was also effective against allergens derived from Blomia tropicalis mite extract. The attenuation of allergic inflammation was not associated with increased numbers of Foxp3-positive or IL-10-producing regulatory T cells or with increased levels of IFN-gamma in the lungs. Instead, the anti-allergic effect of the liposomal formulation was dependent of the innate immune signal transduction generated in CD11c-positive putative dendritic cells expressing MyD88 molecule. Therefore, we highlight the pivotal role of dendritic cells in mediating the attenuation of established allergic lung inflammation following immunotherapy with a liposomal formulation containing allergen plus CpG-ODN.


Assuntos
Adjuvantes Imunológicos/administração & dosagem , Alérgenos/administração & dosagem , Asma/imunologia , Células Dendríticas/imunologia , Dessensibilização Imunológica/métodos , Sistemas de Liberação de Medicamentos/métodos , Fator 88 de Diferenciação Mieloide/metabolismo , Oligodesoxirribonucleotídeos/administração & dosagem , Transdução de Sinais/efeitos dos fármacos , Alérgenos/efeitos adversos , Anafilaxia/imunologia , Anafilaxia/prevenção & controle , Animais , Asma/induzido quimicamente , Modelos Animais de Doenças , Feminino , Técnicas de Inativação de Genes , Lipossomos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fator 88 de Diferenciação Mieloide/genética , Resultado do Tratamento
2.
J Leukoc Biol ; 106(3): 653-664, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31329326

RESUMO

Blomia tropicalis mite is highly prevalent in tropical and subtropical regions and it is associated with allergic diseases such as rhinitis and asthma. By using an OVA-model of allergic lung disease, we have previously shown that sensitization in the presence of toll like receptors (TLRs) agonists attenuates subsequent OVA-induced allergic responses. Here, we evaluated the effect of CpG-ODN, a specific synthetic TLR-9 agonist, on the development of experimental asthma induced by Blomia tropicalis extract, a relevant source of aeroallergens. Among different protocols of Blomia tropicalis extract sensitization, the subcutaneous sensitization in the presence of alum adjuvant induced the highest Th2 responses, including high IgE levels. Adsorption of CpG to Blomia tropicalis extract/Alum attenuated the airway hyperreactivity, the infiltration of inflammatory cells including eosinophils, and the IL-5 content in BAL. In addition, lung peribronchial inflammatory infiltrate, mucus production and IL-5-producing CD3+ CD4+ T cells were significantly reduced in the Blomia tropicalis extract/Alum+CpG group. Importantly, CpG inhibited total IgE production as well as active systemic or cutaneous anaphylaxis reactions. Inhibition of pulmonary Th2 responses was associated with increased IL-10 production but not with IFN-γ production. Notably, in IL-10-deficient mice, sensitization with OVA/Alum+CpG resulted in intense lung neutrophilia and IFN-γ production, indicating that IL-10 is necessary to inhibit subsequent Th1 immunity. Our work highlights the mechanisms of allergy attenuation by CpG and it indicates the potential use of Alum-based formulation with CpG to treat allergic processes.


Assuntos
Adjuvantes Imunológicos/uso terapêutico , Compostos de Alúmen/química , Asma/prevenção & controle , Asma/parasitologia , Pyroglyphidae/fisiologia , Receptor Toll-Like 9/agonistas , Adjuvantes Imunológicos/farmacologia , Adsorção , Anafilaxia/complicações , Anafilaxia/imunologia , Anafilaxia/parasitologia , Animais , Asma/complicações , Citocinas/biossíntese , Modelos Animais de Doenças , Eosinófilos/patologia , Feminino , Hipersensibilidade/complicações , Hipersensibilidade/imunologia , Hipersensibilidade/parasitologia , Imunidade/efeitos dos fármacos , Imunização , Interleucina-10/metabolismo , Interleucina-4/biossíntese , Linfonodos/efeitos dos fármacos , Linfonodos/imunologia , Linfonodos/patologia , Subpopulações de Linfócitos/efeitos dos fármacos , Subpopulações de Linfócitos/imunologia , Camundongos Endogâmicos C57BL , Neutrófilos/patologia , Oligodesoxirribonucleotídeos/farmacologia , Pyroglyphidae/efeitos dos fármacos , Células Th1/efeitos dos fármacos , Células Th1/imunologia , Células Th2/efeitos dos fármacos , Células Th2/imunologia , Receptor Toll-Like 9/metabolismo
3.
Front Immunol ; 8: 47, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28220116

RESUMO

Aluminum-containing adjuvants usually referred as Alum are considered as T helper type-2 (Th2) adjuvants, while agonists of toll-like receptors (TLRs) are viewed as adjuvants that favor Th1/Th17 immunity. Alum has been used in numerous vaccine formulations; however, its undesired pro-Th2 adjuvant activity constitutes a caveat for Alum-based vaccines. Combining Alum with TLR-dependent, pro-Th1/Th17 adjuvants might dampen the pro-Th2 activity and improve the effectiveness of vaccine formulations. Here, using the ovalbumin (OVA) model of allergic lung inflammation, we found that sensitization with the synthetic TLR9 agonist, which is composed of oligodeoxynucleotides containing CpG motifs adsorbed to Alum, inhibited the development of OVA-induced lung allergic Th2 responses without shifting toward a Th1 pattern. The conversion of T cell immunity from the polarized allergic Th2 response to a non-polarized form by sensitization with OVA/Alum/CpG was dependent on MyD88 signaling in myeloid cells. Notably, sensitization of IL-10-deficient mice with OVA/Alum/CpG resulted in the development of neutrophilic lung inflammation associated with IFNγ production. However, in IL-10/IL-12-deficient mice, it resulted in neutrophilic inflammation dominated by IL-17 production. We conclude that OVA/Alum/CpG sensitization signaling via MyD88 and IL-10 molecules results in non-polarized immunity. Conversely, OVA/Alum/CpG sensitization in presence of MyD88 but absence of IL-10 or IL-10/IL-12 molecules results, respectively, in neutrophilic inflammation associated with IFNγ or IL-17 production. Our work provides novel OVA models of lung inflammation and suggests that Alum/CpG-based formulations might be of potential use in anti-allergic or anti-infectious processes.

4.
Front Immunol ; 7: 237, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27379098

RESUMO

INTRODUCTION: Leukotrienes (LTs) play a central role in asthma. Low- to moderate-intensity aerobic exercise (AE) reduces asthmatic inflammation in clinical studies and in experimental models. This study investigated whether AE attenuates LT pathway activation in an ovalbumin (OVA) model of asthma. METHODS: Sixty-four male, BALB/c mice were distributed into Control, Exercise (Exe), OVA, and OVA + Exe groups. Treadmill training was performed at moderate intensity, 5×/week, 1 h/session for 4 weeks. Quantification of bronchoalveolar lavage (BAL) cellularity, leukocytes, airway remodeling, interleukin (IL)-5, IL-13, cysteinyl leukotriene (CysLT), and leukotriene B4 (LTB4) in BAL was performed. In addition, quantitative analyses on peribronchial leukocytes and airway epithelium for LT pathway agents: 5-lypoxygenase (5-LO), LTA4 hydrolase (LTA4H), CysLT1 receptor, CysLT2 receptor, LTC4 synthase, and LTB4 receptor 2 (BLT2) were performed. Airway hyperresponsiveness (AHR) to methacholine (MCh) was assessed via whole body plethysmography. RESULTS: AE decreased eosinophils (p < 0.001), neutrophils (p > 0.001), lymphocytes (p < 0.001), and macrophages (p < 0.01) in BAL, as well as eosinophils (p < 0.01), lymphocytes (p < 0.001), and macrophages (p > 0.001) in airway walls. Collagen (p < 0.01), elastic fibers (p < 0.01), mucus production (p < 0.01), and smooth muscle thickness (p < 0.01), as well as IL-5 (p < 0.01), IL-13 (p < 0.01), CysLT (p < 0.01), and LTB4 (p < 0.01) in BAL were reduced. 5-LO (p < 0.05), LTA4H (p < 0.05), CysLT1 receptor (p < 0.001), CysLT2 receptor (p < 0.001), LTC4 synthase (p < 0.001), and BLT2 (p < 0.01) expression by peribronchial leukocytes and airway epithelium were reduced. Lastly, AHR to MCh 25 mg/mL (p < 0.05) and 50 mg/mL (p < 0.01) was reduced. CONCLUSION: Moderate-intensity AE attenuated asthma phenotype and LT production in both pulmonary leukocytes and airway epithelium of OVA-treated mice.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...