Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 73
Filtrar
1.
Eur J Radiol ; 173: 111362, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38364590

RESUMO

PURPOSE: This article presents the design and validation of evaluation criteria checklist aimed at facilitating decision-making processes regarding participation in research projects and allocation of resources before the preparation of research proposals. MATERIALS AND METHODS: A multidisciplinary team developed a comprehensive evaluation focusing on the proposal preparation phase of research projects. A Delphi survey method was used to establish a connection between the relevance of the project and the possible success of research proposals. Assessment criteria were agreed upon, each assigned specific weights. The results of the survey were applied to a database of 62 proposals for which our research group sought funding during 2020-2021. The method was validated using the funding body's outcomes (approval or rejection) of the submitted proposals as the ground truth per project type (national, European and regional). RESULTS: The results of the survey generated a checklist of 8 criteria (excellence, impact, and efficiency aspects) that effectively assess the possibility of success of research proposals during the preparatory phase. For national projects, the tool validation demonstrated a sensitivity of 100% and a specificity of 76.19%; European projects exhibited a sensitivity of 100% and a specificity of 53.84%; and regional projects showed a sensitivity of 80% and a specificity of 30%. CONCLUSIONS: By establishing an agreed set of evaluation criteria, the developed comprehensive index enables a more precise decision support tool for the participation in research proposals and the allocation of necessary resources. This control system saves valuable time and effort for research groups while enhancing the overall efficiency of available resources.


Assuntos
Lista de Checagem , Alocação de Recursos , Humanos , Alocação de Recursos/métodos
2.
Insights Imaging ; 15(1): 8, 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38228979

RESUMO

PURPOSE: To propose a new quality scoring tool, METhodological RadiomICs Score (METRICS), to assess and improve research quality of radiomics studies. METHODS: We conducted an online modified Delphi study with a group of international experts. It was performed in three consecutive stages: Stage#1, item preparation; Stage#2, panel discussion among EuSoMII Auditing Group members to identify the items to be voted; and Stage#3, four rounds of the modified Delphi exercise by panelists to determine the items eligible for the METRICS and their weights. The consensus threshold was 75%. Based on the median ranks derived from expert panel opinion and their rank-sum based conversion to importance scores, the category and item weights were calculated. RESULT: In total, 59 panelists from 19 countries participated in selection and ranking of the items and categories. Final METRICS tool included 30 items within 9 categories. According to their weights, the categories were in descending order of importance: study design, imaging data, image processing and feature extraction, metrics and comparison, testing, feature processing, preparation for modeling, segmentation, and open science. A web application and a repository were developed to streamline the calculation of the METRICS score and to collect feedback from the radiomics community. CONCLUSION: In this work, we developed a scoring tool for assessing the methodological quality of the radiomics research, with a large international panel and a modified Delphi protocol. With its conditional format to cover methodological variations, it provides a well-constructed framework for the key methodological concepts to assess the quality of radiomic research papers. CRITICAL RELEVANCE STATEMENT: A quality assessment tool, METhodological RadiomICs Score (METRICS), is made available by a large group of international domain experts, with transparent methodology, aiming at evaluating and improving research quality in radiomics and machine learning. KEY POINTS: • A methodological scoring tool, METRICS, was developed for assessing the quality of radiomics research, with a large international expert panel and a modified Delphi protocol. • The proposed scoring tool presents expert opinion-based importance weights of categories and items with a transparent methodology for the first time. • METRICS accounts for varying use cases, from handcrafted radiomics to entirely deep learning-based pipelines. • A web application has been developed to help with the calculation of the METRICS score ( https://metricsscore.github.io/metrics/METRICS.html ) and a repository created to collect feedback from the radiomics community ( https://github.com/metricsscore/metrics ).

3.
Liver Int ; 44(1): 202-213, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37904633

RESUMO

BACKGROUND AND AIMS: Diagnosis of metabolic dysfunction-associated steatohepatitis (MASH) requires histology. In this study, a magnetic resonance imaging (MRI) score was developed and validated to identify MASH in patients with metabolic dysfunction-associated steatotic liver disease (MASLD). Secondarily, a screening strategy for MASH diagnosis was investigated. METHODS: This prospective multicentre study included 317 patients with biopsy-proven MASLD and contemporaneous MRI. The discovery cohort (Spain, Portugal) included 194 patients. NAFLD activity score (NAS) and fibrosis were assessed with the NASH-CRN histologic system. MASH was defined by the presence of steatosis, lobular inflammation, and ballooning, with NAS ≥4 with or without fibrosis. An MRI-based composite biomarker of Proton Density Fat Fraction and waist circumference (MR-MASH score) was developed. Findings were afterwards validated in an independent cohort (United States, Spain) with different MRI protocols. RESULTS: In the derivation cohort, 51% (n = 99) had MASH. The MR-MASH score identified MASH with an AUC = .88 (95% CI .83-.93) and strongly correlated with NAS (r = .69). The MRI score lower cut-off corresponded to 88% sensitivity with 86% NPV, while the upper cut-off corresponded to 92% specificity with 87% PPV. MR-MASH was validated with an AUC = .86 (95% CI .77-.92), 91% sensitivity (lower cut-off) and 87% specificity (upper cut-off). A two-step screening strategy with sequential MR-MASH examination performed in patients with indeterminate-high FIB-4 or transient elastography showed an 83-84% PPV to identify MASH. The AUC of MR-MASH was significantly higher than that of the FAST score (p < .001). CONCLUSIONS: The MR-MASH score has clinical utility in the identification and management of patients with MASH at risk of progression.


Assuntos
Fígado , Hepatopatia Gordurosa não Alcoólica , Humanos , Fígado/patologia , Hepatopatia Gordurosa não Alcoólica/complicações , Hepatopatia Gordurosa não Alcoólica/diagnóstico por imagem , Estudos Prospectivos , Imageamento por Ressonância Magnética , Fibrose , Biópsia , Biomarcadores/metabolismo , Cirrose Hepática/diagnóstico por imagem , Cirrose Hepática/metabolismo
4.
Eur Radiol Exp ; 7(1): 60, 2023 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-37806998

RESUMO

BACKGROUND: This study investigates the functional brain connectivity in patients with anterior knee pain (AKP). While biomechanical models are frequently employed to investigate AKP, it is important to recognize that pain can manifest even in the absence of structural abnormalities. Leveraging the capabilities of functional magnetic resonance imaging (fMRI), this research aims to investigate the brain mechanisms present in AKP patients. METHODS: Forty-five female subjects (24 AKP patients, 21 controls) underwent resting-state fMRI and T1-weighted structural MRI. Functional brain connectivity patterns were analyzed, focusing on pain network areas, and the influence of catastrophizing thoughts was evaluated. RESULTS: Comparing patients and controls, several findings emerged. First, patients with AKP exhibited increased correlation between the right supplementary motor area and cerebellum I, as well as decreased correlation between the right insula and the left rostral prefrontal cortex and superior frontal gyrus. Second, in AKP patients with catastrophizing thoughts, there was increased correlation of the left lateral parietal cortex with two regions of the right cerebellum (II and VII) and the right pallidum, and decreased correlation between the left medial frontal gyrus and the right thalamus. Furthermore, the correlation between these regions showed promising results for discriminating AKP patients from controls, achieving a cross-validation accuracy of 80.5%. CONCLUSIONS: Resting-state fMRI revealed correlation differences in AKP patients compared to controls and based on catastrophizing thoughts levels. These findings shed light on neural correlates of chronic pain in AKP, suggesting that functional brain connectivity alterations may be linked to pain experience in this population. RELEVANCE STATEMENT: Etiopathogenesis of pain in anterior knee pain patients might not be limited to the knee, but also to underlying alterations in the central nervous system: cortical changes might lead a perpetuation of pain. KEY POINTS: • Anterior knee pain patients exhibit distinct functional brain connectivity compared to controls, and among catastrophizing subgroups. • Resting-state fMRI reveals potential for discriminating anterior knee pain patients with 80.5% accuracy. • Functional brain connectivity differences improve understanding of pain pathogenesis and objective anterior knee pain identification.


Assuntos
Encéfalo , Imageamento por Ressonância Magnética , Humanos , Feminino , Imageamento por Ressonância Magnética/métodos , Encéfalo/diagnóstico por imagem , Dor/patologia
5.
Front Endocrinol (Lausanne) ; 14: 1213441, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37600695

RESUMO

Objective: To assess the prevalence of pancreatic steatosis and iron overload in non-alcoholic fatty liver disease (NAFLD) and their correlation with liver histology severity and the risk of cardiometabolic diseases. Method: A prospective, multicenter study including NAFLD patients with biopsy and paired Magnetic Resonance Imaging (MRI) was performed. Liver biopsies were evaluated according to NASH Clinical Research Network, hepatic iron storages were scored, and digital pathology quantified the tissue proportionate areas of fat and iron. MRI-biomarkers of fat fraction (PDFF) and iron accumulation (R2*) were obtained from the liver and pancreas. Different metabolic traits were evaluated, cardiovascular disease (CVD) risk was estimated with the atherosclerotic CVD score, and the severity of iron metabolism alteration was determined by grading metabolic hiperferritinemia (MHF). Associations between CVD, histology and MRI were investigated. Results: In total, 324 patients were included. MRI-determined pancreatic iron overload and moderate-to severe steatosis were present in 45% and 25%, respectively. Liver and pancreatic MRI-biomarkers showed a weak correlation (r=0.32 for PDFF, r=0.17 for R2*). Pancreatic PDFF increased with hepatic histologic steatosis grades and NASH diagnosis (p<0.001). Prevalence of pancreatic steatosis and iron overload increased with the number of metabolic traits (p<0.001). Liver R2* significantly correlated with MHF (AUC=0.77 [0.72-0.82]). MRI-determined pancreatic steatosis (OR=3.15 [1.63-6.09]), and iron overload (OR=2.39 [1.32-4.37]) were independently associated with high-risk CVD. Histologic diagnosis of NASH and advanced fibrosis were also associated with high-risk CVD. Conclusion: Pancreatic steatosis and iron overload could be of utility in clinical decision-making and prognostication of NAFLD.


Assuntos
Doenças Cardiovasculares , Sobrecarga de Ferro , Transtornos do Metabolismo dos Lipídeos , Hepatopatia Gordurosa não Alcoólica , Pancreatopatias , Humanos , Hepatopatia Gordurosa não Alcoólica/complicações , Hepatopatia Gordurosa não Alcoólica/epidemiologia , Doenças Cardiovasculares/epidemiologia , Doenças Cardiovasculares/etiologia , Estudos Prospectivos , Fatores de Risco , Pancreatopatias/complicações , Pancreatopatias/diagnóstico por imagem , Sobrecarga de Ferro/complicações , Ferro , Fatores de Risco de Doenças Cardíacas
6.
PLoS One ; 18(5): e0285121, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37130128

RESUMO

BACKGROUND: Recently, artificial intelligence (AI)-based applications for chest imaging have emerged as potential tools to assist clinicians in the diagnosis and management of patients with coronavirus disease 2019 (COVID-19). OBJECTIVES: To develop a deep learning-based clinical decision support system for automatic diagnosis of COVID-19 on chest CT scans. Secondarily, to develop a complementary segmentation tool to assess the extent of lung involvement and measure disease severity. METHODS: The Imaging COVID-19 AI initiative was formed to conduct a retrospective multicentre cohort study including 20 institutions from seven different European countries. Patients with suspected or known COVID-19 who underwent a chest CT were included. The dataset was split on the institution-level to allow external evaluation. Data annotation was performed by 34 radiologists/radiology residents and included quality control measures. A multi-class classification model was created using a custom 3D convolutional neural network. For the segmentation task, a UNET-like architecture with a backbone Residual Network (ResNet-34) was selected. RESULTS: A total of 2,802 CT scans were included (2,667 unique patients, mean [standard deviation] age = 64.6 [16.2] years, male/female ratio 1.3:1). The distribution of classes (COVID-19/Other type of pulmonary infection/No imaging signs of infection) was 1,490 (53.2%), 402 (14.3%), and 910 (32.5%), respectively. On the external test dataset, the diagnostic multiclassification model yielded high micro-average and macro-average AUC values (0.93 and 0.91, respectively). The model provided the likelihood of COVID-19 vs other cases with a sensitivity of 87% and a specificity of 94%. The segmentation performance was moderate with Dice similarity coefficient (DSC) of 0.59. An imaging analysis pipeline was developed that returned a quantitative report to the user. CONCLUSION: We developed a deep learning-based clinical decision support system that could become an efficient concurrent reading tool to assist clinicians, utilising a newly created European dataset including more than 2,800 CT scans.


Assuntos
COVID-19 , Aprendizado Profundo , Humanos , Feminino , Masculino , Pessoa de Meia-Idade , COVID-19/diagnóstico por imagem , Inteligência Artificial , Pulmão/diagnóstico por imagem , Teste para COVID-19 , Estudos de Coortes , SARS-CoV-2 , Tomografia Computadorizada por Raios X/métodos
7.
Am J Cancer Res ; 13(2): 509-525, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36895981

RESUMO

The current standard front-line therapy for patients with diffuse large-B cell lymphoma (DLBCL)-rituximab plus cyclophosphamide, doxorubicin, vincristine, and prednisone (R-CHOP)-is found to be ineffective in up to one-third of them. Thus, their early identification is an important step towards testing alternative treatment options. In this retrospective study, we assessed the ability of 18F-FDG PET/CT imaging features (radiomic + PET conventional parameters) plus clinical data, alone or in combination with genomic parameters to predict complete response to first-line treatment. Imaging features were extracted from images prior treatment. Lesions were segmented as a whole to reflect tumor burden. Multivariate logistic regression predictive models for response to first-line treatment trained with clinical and imaging features, or with clinical, imaging, and genomic features were developed. For imaging feature selection, a manual selection approach or a linear discriminant analysis (LDA) for dimensionality reduction were applied. Confusion matrices and performance metrics were obtained to assess model performance. Thirty-three patients (median [range] age, 58 [49-69] years) were included, of whom 23 (69.69%) achieved long-term complete response. Overall, the inclusion of genomic features improved prediction ability. The best performance metrics were obtained with the combined model including genomic data and built applying the LDA method (AUC of 0.904, and 90% of balanced accuracy). The amplification of BCL6 was found to significantly contribute to explain response to first-line treatment in both manual and LDA models. Among imaging features, radiomic features reflecting lesion distribution heterogeneity (GLSZM_GrayLevelVariance, Sphericity and GLCM_Correlation) were predictors of response in manual models. Interestingly, when the dimensionality reduction was applied, the whole set of imaging features-mostly composed of radiomic features-significantly contributed to explain response to front-line therapy. A nomogram predictive for response to first-line treatment was constructed. In summary, a combination of imaging features, clinical variables and genomic data was able to successfully predict complete response to first-line treatment in DLBCL patients, with the amplification of BCL6 as the genetic marker retaining the highest predictive value. Additionally, a panel of imaging features may provide important information when predicting treatment response, with lesion dissemination-related radiomic features deserving especial attention.

8.
Cancers (Basel) ; 15(5)2023 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-36900410

RESUMO

OBJECTIVES: To externally validate and assess the accuracy of a previously trained fully automatic nnU-Net CNN algorithm to identify and segment primary neuroblastoma tumors in MR images in a large children cohort. METHODS: An international multicenter, multivendor imaging repository of patients with neuroblastic tumors was used to validate the performance of a trained Machine Learning (ML) tool to identify and delineate primary neuroblastoma tumors. The dataset was heterogeneous and completely independent from the one used to train and tune the model, consisting of 300 children with neuroblastic tumors having 535 MR T2-weighted sequences (486 sequences at diagnosis and 49 after finalization of the first phase of chemotherapy). The automatic segmentation algorithm was based on a nnU-Net architecture developed within the PRIMAGE project. For comparison, the segmentation masks were manually edited by an expert radiologist, and the time for the manual editing was recorded. Different overlaps and spatial metrics were calculated to compare both masks. RESULTS: The median Dice Similarity Coefficient (DSC) was high 0.997; 0.944-1.000 (median; Q1-Q3). In 18 MR sequences (6%), the net was not able neither to identify nor segment the tumor. No differences were found regarding the MR magnetic field, type of T2 sequence, or tumor location. No significant differences in the performance of the net were found in patients with an MR performed after chemotherapy. The time for visual inspection of the generated masks was 7.9 ± 7.5 (mean ± Standard Deviation (SD)) seconds. Those cases where manual editing was needed (136 masks) required 124 ± 120 s. CONCLUSIONS: The automatic CNN was able to locate and segment the primary tumor on the T2-weighted images in 94% of cases. There was an extremely high agreement between the automatic tool and the manually edited masks. This is the first study to validate an automatic segmentation model for neuroblastic tumor identification and segmentation with body MR images. The semi-automatic approach with minor manual editing of the deep learning segmentation increases the radiologist's confidence in the solution with a minor workload for the radiologist.

9.
Radiology ; 307(1): e221856, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36809220

RESUMO

Accumulation of excess iron in the body, or systemic iron overload, results from a variety of causes. The concentration of iron in the liver is linearly related to the total body iron stores and, for this reason, quantification of liver iron concentration (LIC) is widely regarded as the best surrogate to assess total body iron. Historically assessed using biopsy, there is a clear need for noninvasive quantitative imaging biomarkers of LIC. MRI is highly sensitive to the presence of tissue iron and has been increasingly adopted as a noninvasive alternative to biopsy for detection, severity grading, and treatment monitoring in patients with known or suspected iron overload. Multiple MRI strategies have been developed in the past 2 decades, based on both gradient-echo and spin-echo imaging, including signal intensity ratio and relaxometry strategies. However, there is a general lack of consensus regarding the appropriate use of these methods. The overall goal of this article is to summarize the current state of the art in the clinical use of MRI to quantify liver iron content and to assess the overall level of evidence of these various methods. Based on this summary, expert consensus panel recommendations on best practices for MRI-based quantification of liver iron are provided.


Assuntos
Sobrecarga de Ferro , Fígado , Humanos , Fígado/diagnóstico por imagem , Fígado/patologia , Sobrecarga de Ferro/diagnóstico por imagem , Sobrecarga de Ferro/patologia , Imageamento por Ressonância Magnética/métodos , Ferro , Biópsia
10.
Insights Imaging ; 14(1): 11, 2023 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-36645542

RESUMO

The use of artificial intelligence (AI) with medical images to solve clinical problems is becoming increasingly common, and the development of new AI solutions is leading to more studies and publications using this computational technology. As a novel research area, the use of common standards to aid AI developers and reviewers as quality control criteria will improve the peer review process. Although some guidelines do exist, their heterogeneity and extension advocate that more explicit and simple schemes should be applied on the publication practice. Based on a review of existing AI guidelines, a proposal which collects, unifies, and simplifies the most relevant criteria was developed. The MAIC-10 (Must AI Criteria-10) checklist with 10 items was implemented as a guide to design studies and evaluate publications related to AI in the field of medical imaging. Articles published in Insights into Imaging in 2021 were selected to calculate their corresponding MAIC-10 quality score. The mean score was found to be 5.6 ± 1.6, with critical items present in most articles, such as "Clinical need", "Data annotation", "Robustness", and "Transparency" present in more than 80% of papers, while improvements in other areas were identified. MAIC-10 was also observed to achieve the highest intra-observer reproducibility when compared to other existing checklists, with an overall reduction in terms of checklist length and complexity. In summary, MAIC-10 represents a short and simple quality assessment tool which is objective, robust and widely applicable to AI studies in medical imaging.

11.
Eur Radiol ; 33(7): 5087-5096, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36690774

RESUMO

OBJECTIVE: Automatic MR imaging segmentation of the prostate provides relevant clinical benefits for prostate cancer evaluation such as calculation of automated PSA density and other critical imaging biomarkers. Further, automated T2-weighted image segmentation of central-transition zone (CZ-TZ), peripheral zone (PZ), and seminal vesicle (SV) can help to evaluate clinically significant cancer following the PI-RADS v2.1 guidelines. Therefore, the main objective of this work was to develop a robust and reproducible CNN-based automatic prostate multi-regional segmentation model using an intercontinental cohort of prostate MRI. METHODS: A heterogeneous database of 243 T2-weighted prostate studies from 7 countries and 10 machines of 3 different vendors, with the CZ-TZ, PZ, and SV regions manually delineated by two experienced radiologists (ground truth), was used to train (n = 123) and test (n = 120) a U-Net-based model with deep supervision using a cyclical learning rate. The performance of the model was evaluated by means of dice similarity coefficient (DSC), among others. Segmentation results with a DSC above 0.7 were considered accurate. RESULTS: The proposed method obtained a DSC of 0.88 ± 0.01, 0.85 ± 0.02, 0.72 ± 0.02, and 0.72 ± 0.02 for the prostate gland, CZ-TZ, PZ, and SV respectively in the 120 studies of the test set when comparing the predicted segmentations with the ground truth. No statistically significant differences were found in the results obtained between manufacturers or continents. CONCLUSION: Prostate multi-regional T2-weighted MR images automatic segmentation can be accurately achieved by U-Net like CNN, generalizable in a highly variable clinical environment with different equipment, acquisition configurations, and population. KEY POINTS: • Deep learning techniques allows the accurate segmentation of the prostate in three different regions on MR T2w images. • Multi-centric database proved the generalization of the CNN model on different institutions across different continents. • CNN models can be used to aid on the diagnosis and follow-up of patients with prostate cancer.


Assuntos
Imageamento por Ressonância Magnética , Neoplasias da Próstata , Masculino , Humanos , Imageamento por Ressonância Magnética/métodos , Próstata/diagnóstico por imagem , Próstata/patologia , Neoplasias da Próstata/diagnóstico por imagem , Neoplasias da Próstata/patologia , Redes Neurais de Computação , Espectroscopia de Ressonância Magnética , Processamento de Imagem Assistida por Computador/métodos
12.
Anticancer Res ; 43(2): 781-788, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36697103

RESUMO

BACKGROUND/AIM: The present study aimed to investigate radiomics features derived from magnetic resonance imaging (MRI) in patients with locally advanced rectal cancer treated with neoadjuvant chemoradiotherapy (CRT). PATIENTS AND METHODS: We retrospectively evaluated data of 53 patients (32 males, 21 females) with T3/T4 or N+ rectal cancer who underwent MRI before and after CRT. Twenty-seven texture radiomics features were extracted from regions of interest, delimiting the tumor on T2-weighted images. RESULTS: All 27 radiomics features extracted before CRT showed a statistically significant association with the tumor regression grade (TRG) (p<0.05), whereas, after CRT, only the Cluster Prominence value was the only variable to predict TRG (p=0.037, r=0.291). CONCLUSION: All 27 features extracted before CRT were able to predict response to CRT and Cluster Prominence continued to be statistically significant even after CRT. The impact of radiomics features derived from MRI could be further investigated in patients with locally advanced rectal cancer.


Assuntos
Segunda Neoplasia Primária , Neoplasias Retais , Masculino , Feminino , Humanos , Estudos Retrospectivos , Quimiorradioterapia/métodos , Imageamento por Ressonância Magnética/métodos , Neoplasias Retais/diagnóstico por imagem , Neoplasias Retais/terapia , Neoplasias Retais/patologia , Reto/patologia , Terapia Neoadjuvante/métodos , Segunda Neoplasia Primária/patologia , Resultado do Tratamento
13.
Insights Imaging ; 13(1): 159, 2022 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-36194301

RESUMO

BACKGROUND: Lesion/tissue segmentation on digital medical images enables biomarker extraction, image-guided therapy delivery, treatment response measurement, and training/validation for developing artificial intelligence algorithms and workflows. To ensure data reproducibility, criteria for standardised segmentation are critical but currently unavailable. METHODS: A modified Delphi process initiated by the European Imaging Biomarker Alliance (EIBALL) of the European Society of Radiology (ESR) and the European Organisation for Research and Treatment of Cancer (EORTC) Imaging Group was undertaken. Three multidisciplinary task forces addressed modality and image acquisition, segmentation methodology itself, and standards and logistics. Devised survey questions were fed via a facilitator to expert participants. The 58 respondents to Round 1 were invited to participate in Rounds 2-4. Subsequent rounds were informed by responses of previous rounds. RESULTS/CONCLUSIONS: Items with ≥ 75% consensus are considered a recommendation. These include system performance certification, thresholds for image signal-to-noise, contrast-to-noise and tumour-to-background ratios, spatial resolution, and artefact levels. Direct, iterative, and machine or deep learning reconstruction methods, use of a mixture of CE marked and verified research tools were agreed and use of specified reference standards and validation processes considered essential. Operator training and refreshment were considered mandatory for clinical trials and clinical research. Items with a 60-74% agreement require reporting (site-specific accreditation for clinical research, minimal pixel number within lesion segmented, use of post-reconstruction algorithms, operator training refreshment for clinical practice). Items with ≤ 60% agreement are outside current recommendations for segmentation (frequency of system performance tests, use of only CE-marked tools, board certification of operators, frequency of operator refresher training). Recommendations by anatomical area are also specified.

14.
Cartilage ; 13(3): 19476035221118166, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36004407

RESUMO

OBJECTIVE: To evaluate pathological changes in cartilage and subchondral bone MRI biomarkers in a rabbit model of osteoarthritis (OA) and correlate these with histological variations. DESIGN: Transection of the anterior cruciate ligament was performed on the right knee of eighteen 12-week-old New Zealand white rabbits to induce OA. 3-Tesla MR images were obtained from 18 healthy control knees (left) and 18 knees with OA (right). Imaging biomarkers included volume, thickness, T1 and T2* cartilage parametric maps, and several subchondral bone features: bone volume to total volume ratio, trabecular thickness, trabecular spacing, trabecular number (TbN), 2D and 3D fractal dimensions, and quality of trabecular score (QTS). Microscopic analysis of the lateral femoral condyles was set as the ground truth. RESULTS: When healthy and osteoarthritic knees were compared, significant differences were seen in the T1 and T2* values of the femur and tibia cartilage and in the subchondral bone volume to total volume, TbN, and QTS of both the lateral and medial aspects of the femur and tibia. Histological findings revealed significant osteoarthritic changes between healthy and osteoarthritic knees in stain, structure, chondrocyte density, total score, and subchondral bone biomarker levels. A positive correlation was found between histological staining, structure, chondrocyte density, and total score variables in T1 and T2* cartilage biomarkers. A negative correlation was observed between histological subchondral bone variables and magnetic resonance D2D and QTS biomarkers. CONCLUSION: Quantification of several cartilage and subchondral bone imaging biomarkers in a rabbit model of OA allows the detection of significant changes, which are correlated with histological findings.


Assuntos
Cartilagem Articular , Osteoartrite do Joelho , Animais , Biomarcadores , Osso e Ossos/diagnóstico por imagem , Osso e Ossos/patologia , Cartilagem Articular/diagnóstico por imagem , Cartilagem Articular/patologia , Imageamento por Ressonância Magnética/métodos , Osteoartrite do Joelho/diagnóstico por imagem , Osteoartrite do Joelho/patologia , Coelhos
15.
J Digit Imaging ; 35(5): 1131-1142, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35789447

RESUMO

Magnetic resonance (MR) imaging is the most sensitive clinical tool in the diagnosis and monitoring of multiple sclerosis (MS) alterations. Spinal cord evaluation has gained interest in this clinical scenario in recent years, but, unlike the brain, there is a more limited choice of algorithms to assist spinal cord segmentation. Our goal was to investigate and develop an automatic MR cervical cord segmentation method, enabling automated and seamless spinal cord atrophy assessment and setting the stage for the development of an aggregated algorithm for the extraction of lesion-related imaging biomarkers. The algorithm was developed using a real-world MR imaging dataset of 121 MS patients (96 cases used as a training dataset and 25 cases as a validation dataset). Transversal, 3D T1-weighted gradient echo MR images (TE/TR/FA = 1.7-2.7 ms/5.6-8.2 ms/12°) were acquired in a 3 T system (Signa HD, GEHC) as standard of care in our clinical practice. Experienced radiologists supervised the manual labelling, which was considered the ground-truth. The 2D convolutional neural network consisted of a hybrid residual attention-aware segmentation method trained to delineate the cervical spinal cord. The training was conducted using a focal loss function, based on the Tversky index to address label imbalance, and an automatic optimal learning rate finder. Our automated model provided an accurate segmentation, achieving a validation DICE coefficient of 0.904 ± 0.101 compared with the manual delineation. An automatic method for cervical spinal cord segmentation on T1-weighted MR images was successfully implemented. It will have direct implications serving as the first step for accelerating the process for MS staging and follow-up through imaging biomarkers.


Assuntos
Medula Cervical , Esclerose Múltipla , Humanos , Medula Cervical/diagnóstico por imagem , Medula Cervical/patologia , Esclerose Múltipla/diagnóstico por imagem , Esclerose Múltipla/patologia , Processamento de Imagem Assistida por Computador/métodos , Redes Neurais de Computação , Imageamento por Ressonância Magnética/métodos , Medula Espinal/patologia , Atenção
16.
Inf Fusion ; 82: 99-122, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35664012

RESUMO

Removing the bias and variance of multicentre data has always been a challenge in large scale digital healthcare studies, which requires the ability to integrate clinical features extracted from data acquired by different scanners and protocols to improve stability and robustness. Previous studies have described various computational approaches to fuse single modality multicentre datasets. However, these surveys rarely focused on evaluation metrics and lacked a checklist for computational data harmonisation studies. In this systematic review, we summarise the computational data harmonisation approaches for multi-modality data in the digital healthcare field, including harmonisation strategies and evaluation metrics based on different theories. In addition, a comprehensive checklist that summarises common practices for data harmonisation studies is proposed to guide researchers to report their research findings more effectively. Last but not least, flowcharts presenting possible ways for methodology and metric selection are proposed and the limitations of different methods have been surveyed for future research.

17.
Circ Cardiovasc Imaging ; 15(6): e013379, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35678191

RESUMO

BACKGROUND: Rapid screening and accurate diagnosis of acute myocardial infarction are critical to reduce the progression of myocardial necrosis, in which proteolytic degradation of myocardial extracellular matrix plays a major role. In previous studies, we found that targeting the extracellular matrix metalloprotease inducer (EMMPRIN) by injecting nanoparticles conjugated with the specific EMMPRIN-binding peptide AP9 significantly improved cardiac function in mice subjected to ischemia/reperfusion. METHODS: In a porcine model of coronary ischemia/reperfusion, we tested the theragnostic effects of administering 0.1 mg/kg gadolinium-containing nanoparticles conjugated with AP9 (NAP9), a synthetic peptide that targets EMMPRIN or a control nanoparticle (NAPSC). Cardiac magnetic resonance assessment of the infarct progression, ventricular function, and nanoparticle distribution was performed the next 7 days. We also measured the infarcted area of the heart and cardiac remodeling at 7 or 21 days after ischemia/reperfusion. RESULTS: After 21 days of ischemia/reperfusion, NAP9 reduced the extension of cardiac necrosis (14.1±9.7 versus 35.5±1.8) and the levels of collagenolytic activity of MMPs (matrix metalloproteases), along with a significant reduction in collagen deposition (7.5±4.5 versus 41.3±20); including the ratio of type I versus III collagen fibers in the necrotic myocardium. In terms of cardiac function, the response to NAP9 administration resulted in a significant improvement of cardiac performance overtime, as evidenced by the left ventricle ejection fraction (64.0±7.8), when compared with those present in the NAPSC group (47.3±4.7). As shown by magnetic resonance imaging, noninvasive molecular imaging of NAP9 enabled us to find a significant reduction in cardiac necrosis, myocardial edema, hemorrhage, and microvascular obstruction, suggesting that NAP9 may reduce myocardial injury and preserve left ventricular function, at least, by preventing the effect of EMMPRIN on extracellular matrix degradation. CONCLUSIONS: Our data point towards NAP9 as a promising theragnostic tool in managing acute myocardial infarction, by inhibiting EMMPRIN-induced extracellular matrix degradation and allowing noninvasive visualization of cardiac necrosis progression over time.


Assuntos
Doença da Artéria Coronariana , Infarto do Miocárdio , Nanopartículas , Animais , Basigina/metabolismo , Colágeno , Doença da Artéria Coronariana/patologia , Matriz Extracelular/patologia , Humanos , Metaloproteinases da Matriz/metabolismo , Camundongos , Infarto do Miocárdio/diagnóstico por imagem , Infarto do Miocárdio/tratamento farmacológico , Infarto do Miocárdio/metabolismo , Miocárdio/patologia , Nanopartículas/química , Medicina de Precisão , Reperfusão , Suínos
18.
Br J Radiol ; 95(1137): 20220072, 2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-35687700

RESUMO

Patients with pancreatic ductal adenocarcinoma (PDAC) are generally classified into four categories based on contrast-enhanced CT at diagnosis: resectable, borderline resectable, unresectable, and metastatic disease. In the initial grading and staging of PDAC, structured radiological templates are useful but limited, as there is a need to define the aggressiveness and microscopic disease stage of these tumours to ensure adequate treatment allocation. Quantitative imaging analysis allows radiomics and dynamic imaging features to provide information of clinical outcomes, and to construct clinical models based on radiomics signatures or imaging phenotypes. These quantitative features may be used as prognostic and predictive biomarkers in clinical decision-making, enabling personalised management of advanced PDAC. Deep learning and convolutional neural networks also provide high level bioinformatics tools that can help define features associated with a given aspect of PDAC biology and aggressiveness, paving the way to define outcomes based on these features. Thus, the prediction of tumour phenotype, treatment response and patient prognosis may be feasible by using such comprehensive and integrated radiomics models. Despite these promising results, quantitative imaging is not ready for clinical implementation in PDAC. Limitations include the instability of metrics and lack of external validation. Large properly annotated datasets, including relevant semantic features (demographics, blood markers, genomics), image harmonisation, robust radiomics analysis, clinically significant tasks as outputs, comparisons with gold-standards (such as TNM or pretreatment classifications) and fully independent validation cohorts, will be required for the development of trustworthy radiomics and artificial intelligence solutions to predict PDAC aggressiveness in a clinical setting.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Inteligência Artificial , Carcinoma Ductal Pancreático/diagnóstico por imagem , Humanos , Neoplasias Pancreáticas/diagnóstico por imagem , Neoplasias Pancreáticas/patologia , Prognóstico , Neoplasias Pancreáticas
19.
Front Oncol ; 12: 742701, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35280732

RESUMO

The CHAIMELEON project aims to set up a pan-European repository of health imaging data, tools and methodologies, with the ambition to set a standard and provide resources for future AI experimentation for cancer management. The project is a 4 year long, EU-funded project tackling some of the most ambitious research in the fields of biomedical imaging, artificial intelligence and cancer treatment, addressing the four types of cancer that currently have the highest prevalence worldwide: lung, breast, prostate and colorectal. To allow this, clinical partners and external collaborators will populate the repository with multimodality (MR, CT, PET/CT) imaging and related clinical data. Subsequently, AI developers will enable a multimodal analytical data engine facilitating the interpretation, extraction and exploitation of the information stored at the repository. The development and implementation of AI-powered pipelines will enable advancement towards automating data deidentification, curation, annotation, integrity securing and image harmonization. By the end of the project, the usability and performance of the repository as a tool fostering AI experimentation will be technically validated, including a validation subphase by world-class European AI developers, participating in Open Challenges to the AI Community. Upon successful validation of the repository, a set of selected AI tools will undergo early in-silico validation in observational clinical studies coordinated by leading experts in the partner hospitals. Tool performance will be assessed, including external independent validation on hallmark clinical decisions in response to some of the currently most important clinical end points in cancer. The project brings together a consortium of 18 European partners including hospitals, universities, R&D centers and private research companies, constituting an ecosystem of infrastructures, biobanks, AI/in-silico experimentation and cloud computing technologies in oncology.

20.
Radiology ; 302(2): 345-354, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34783592

RESUMO

Background Standardized manual region of interest (ROI) sampling strategies for hepatic MRI steatosis and iron quantification are time consuming, with variable results. Purpose To evaluate the performance of automatic MRI whole-liver segmentation (WLS) for proton density fat fraction (PDFF) and iron estimation (transverse relaxometry [R2*]) versus manual ROI, with liver biopsy as the reference standard. Materials and Methods This prospective, cross-sectional, multicenter study recruited participants with chronic liver disease who underwent liver biopsy and chemical shift-encoded 3.0-T MRI between January 2017 and January 2021. Biopsy evaluation included histologic grading and digital pathology. MRI liver sampling strategies included manual ROI (two observers) and automatic whole-liver (deep learning algorithm) segmentation for PDFF- and R2*-derived measurements. Agreements between segmentation methods were measured using intraclass correlation coefficients (ICCs), and biases were evaluated using Bland-Altman analyses. Linear regression analyses were performed to determine the correlation between measurements and digital pathology. Results A total of 165 participants were included (mean age ± standard deviation, 55 years ± 12; 96 women; 101 of 165 participants [61%] with nonalcoholic fatty liver disease). Agreements between mean measurements were excellent, with ICCs of 0.98 for both PDFF and R2*. The median bias was 0.5% (interquartile range, -0.4% to 1.2%) for PDFF and 2.7 sec-1 (interquartile range, 0.2-5.3 sec-1) for R2* (P < .001 for both). Margins of error were lower for WLS than ROI-derived parameters (-0.03% for PDFF and -0.3 sec-1 for R2*). ROI and WLS showed similar performance for steatosis (ROI AUC, 0.96; WLS AUC, 0.97; P = .53) and iron overload (ROI AUC, 0.85; WLS AUC, 0.83; P = .09). Correlations with digital pathology were high (P < .001) between the fat ratio and PDFF (ROI r = 0.89; WLS r = 0.90) and moderate (P < .001) between the iron ratio and R2* (ROI r = 0.65; WLS r = 0.64). Conclusion Proton density fat fraction and transverse relaxometry measurements derived from MRI automatic whole-liver segmentation (WLS) were accurate for steatosis and iron grading in chronic liver disease and correlated with digital pathology. Automated WLS estimations were higher, with a lower margin of error than manual region of interest estimations. © RSNA, 2021 Online supplemental material is available for this article. See also the editorial by Moura Cunha and Fowler in this issue.


Assuntos
Aprendizado Profundo , Sobrecarga de Ferro/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Hepatopatia Gordurosa não Alcoólica/diagnóstico por imagem , Biópsia , Doença Crônica , Estudos Transversais , Feminino , Humanos , Sobrecarga de Ferro/patologia , Masculino , Pessoa de Meia-Idade , Hepatopatia Gordurosa não Alcoólica/patologia , Estudos Prospectivos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...