Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomedicines ; 10(10)2022 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-36289910

RESUMO

Alpha-synuclein's role in diseases termed "synucleinopathies", including Parkinson's disease, has been well-documented. However, after over 25 years of research, we still do not fully understand the alpha-synuclein protein and its role in disease. In vitro cellular models are some of the most powerful tools that researchers have at their disposal to understand protein function. Advantages include good control over experimental conditions, the possibility for high throughput, and fewer ethical issues when compared to animal models or the attainment of human samples. On the flip side, their major disadvantages are their questionable relevance and lack of a "whole-brain" environment when it comes to modeling human diseases, such as is the case of neurodegenerative disorders. Although now, with the advent of pluripotent stem cells and the ability to create minibrains in a dish, this is changing. With this review, we aim to wade through the recent alpha-synuclein literature to discuss how different cell culture setups (immortalized cell lines, primary neurons, human induced pluripotent stem cells (hiPSCs), blood-brain barrier models, and brain organoids) can help us understand aggregation pathology in Parkinson's and other synucleinopathies.

2.
Mol Ther ; 29(9): 2821-2840, 2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-33940158

RESUMO

A molecular hallmark in Parkinson's disease (PD) pathogenesis are α-synuclein aggregates. Cerebral dopamine neurotrophic factor (CDNF) is an atypical growth factor that is mostly resident in the endoplasmic reticulum but exerts its effects both intracellularly and extracellularly. One of the beneficial effects of CDNF can be protecting neurons from the toxic effects of α-synuclein. Here, we investigated the effects of CDNF on α-synuclein aggregation in vitro and in vivo. We found that CDNF directly interacts with α-synuclein with a KD = 23 ± 6 nM and reduces its auto-association. Using nuclear magnetic resonance (NMR) spectroscopy, we identified interaction sites on the CDNF protein. Remarkably, CDNF reduces the neuronal internalization of α-synuclein fibrils and induces the formation of insoluble phosphorylated α-synuclein inclusions. Intra-striatal CDNF administration alleviates motor deficits in rodents challenged with α-synuclein fibrils, though it did not reduce the number of phosphorylated α-synuclein inclusions in the substantia nigra. CDNF's beneficial effects on rodent behavior appear not to be related to the number of inclusions formed in the current context, and further study of its effects on the aggregation mechanism in vivo are needed. Nonetheless, the interaction of CDNF with α-synuclein, modifying its aggregation, spreading, and associated behavioral alterations, provides novel insights into the potential of CDNF as a therapeutic strategy in PD and other synucleinopathies.


Assuntos
Fatores de Crescimento Neural/química , Fatores de Crescimento Neural/metabolismo , Doença de Parkinson/fisiopatologia , Substância Negra/metabolismo , alfa-Sinucleína/química , alfa-Sinucleína/metabolismo , Animais , Sítios de Ligação , Linhagem Celular , Modelos Animais de Doenças , Dopamina/metabolismo , Humanos , Espectroscopia de Ressonância Magnética , Masculino , Camundongos , Modelos Moleculares , Doença de Parkinson/metabolismo , Fosforilação , Cultura Primária de Células , Agregados Proteicos , Ligação Proteica , Conformação Proteica , Ratos
3.
Int J Mol Sci ; 22(9)2021 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-33919317

RESUMO

Induced pluripotent stem cells (iPSCs) are a self-renewable pool of cells derived from an organism's somatic cells. These can then be programmed to other cell types, including neurons. Use of iPSCs in research has been two-fold as they have been used for human disease modelling as well as for the possibility to generate new therapies. Particularly in complex human diseases, such as neurodegenerative diseases, iPSCs can give advantages over traditional animal models in that they more accurately represent the human genome. Additionally, patient-derived cells can be modified using gene editing technology and further transplanted to the brain. Glial cells have recently become important avenues of research in the field of neurodegenerative diseases, for example, in Alzheimer's disease and Parkinson's disease. This review focuses on using glial cells (astrocytes, microglia, and oligodendrocytes) derived from human iPSCs in order to give a better understanding of how these cells contribute to neurodegenerative disease pathology. Using glia iPSCs in in vitro cell culture, cerebral organoids, and intracranial transplantation may give us future insight into both more accurate models and disease-modifying therapies.


Assuntos
Células-Tronco Pluripotentes Induzidas/citologia , Doenças Neurodegenerativas/terapia , Neuroglia/citologia , Neurônios/citologia , Animais , Humanos , Doenças Neurodegenerativas/patologia
4.
Mov Disord ; 35(12): 2279-2289, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32964492

RESUMO

BACKGROUND: Parkinson's disease (PD) is associated with proteostasis disturbances and accumulation of misfolded α-synuclein (α-syn), a cytosolic protein present in high concentrations at pre-synaptic neuronal terminals. It is a primary constituent of intracellular protein aggregates known as Lewy neurites or Lewy bodies. Progression of Lewy pathology caused by the prion-like self-templating properties of misfolded α-syn is a characteristic feature in the brains of PD patients. Glial cell line-derived neurotrophic factor (GDNF) promotes survival of mature dopamine (DA) neurons in vitro and in vivo. However, the data on its effect on Lewy pathology is controversial. OBJECTIVES: We studied the effects of GDNF on misfolded α-syn accumulation in DA neurons. METHODS: Lewy pathology progression was modeled by the application of α-syn preformed fibrils in cultured DA neurons and in the adult mice. RESULTS: We discovered that GDNF prevented accumulation of misfolded α-syn in DA neurons in culture and in vivo. These effects were abolished by deletion of receptor tyrosine kinase rearranged during transfection (RET) or by inhibitors of corresponding signaling pathway. Expression of constitutively active RET protected DA neurons from fibril-induced α-syn accumulation. CONCLUSIONS: For the first time, we have shown the neurotrophic factor-mediated protection against the misfolded α-syn propagation in DA neurons, uncovered underlying receptors, and investigated the involved signaling pathways. These results demonstrate that activation of GDNF/RET signaling can be an effective therapeutic approach to prevent Lewy pathology spread at early stages of PD. © 2020 International Parkinson and Movement Disorder Society.


Assuntos
Neurônios Dopaminérgicos , Corpos de Lewy , Animais , Neurônios Dopaminérgicos/metabolismo , Fator Neurotrófico Derivado de Linhagem de Célula Glial , Humanos , Corpos de Lewy/metabolismo , Mesencéfalo/metabolismo , Camundongos , Proteínas Proto-Oncogênicas c-ret , Transdução de Sinais , alfa-Sinucleína/metabolismo
5.
Curr Protoc Neurosci ; 91(1): e88, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32049438

RESUMO

Parkinson's disease (PD) is an age-related neurodegenerative disorder characterized by motor symptoms such as tremor, slowness of movement, rigidity, and postural instability, as well as non-motor features like sleep disturbances, loss of ability to smell, depression, constipation, and pain. Motor symptoms are caused by depletion of dopamine in the striatum due to the progressive loss of dopamine neurons in the substantia nigra pars compacta. Approximately 10% of PD cases are familial arising from genetic mutations in α-synuclein, LRRK2, DJ-1, PINK1, parkin, and several other proteins. The majority of PD cases are, however, idiopathic, i.e., having no clear etiology. PD is characterized by progressive accumulation of insoluble inclusions, known as Lewy bodies, mostly composed of α-synuclein and membrane components. The cause of PD is currently attributed to cellular proteostasis deregulation and mitochondrial dysfunction, which are likely interdependent. In addition, neuroinflammation is present in brains of PD patients, but whether it is the cause or consequence of neurodegeneration remains to be studied. Rodents do not develop PD or PD-like motor symptoms spontaneously; however, neurotoxins, genetic mutations, viral vector-mediated transgene expression and, recently, injections of misfolded α-synuclein have been successfully utilized to model certain aspects of the disease. Here, we critically review the advantages and drawbacks of rodent PD models and discuss approaches to advance pre-clinical PD research towards successful disease-modifying therapy. © 2020 The Authors.


Assuntos
Neurotoxinas/toxicidade , Transtornos Parkinsonianos , Animais , Corpo Estriado/efeitos dos fármacos , Neurônios Dopaminérgicos/efeitos dos fármacos , Neurônios Dopaminérgicos/ultraestrutura , Avaliação Pré-Clínica de Medicamentos/métodos , Previsões , Estudo de Associação Genômica Ampla , Técnicas Histológicas , Humanos , Camundongos , Camundongos Transgênicos , Proteínas do Tecido Nervoso/análise , Proteínas do Tecido Nervoso/genética , Fármacos Neuroprotetores/uso terapêutico , Doença de Parkinson/genética , Transtornos Parkinsonianos/induzido quimicamente , Transtornos Parkinsonianos/tratamento farmacológico , Transtornos Parkinsonianos/genética , Transtornos Parkinsonianos/patologia , Praguicidas/toxicidade , Agregação Patológica de Proteínas/genética , Agregação Patológica de Proteínas/patologia , Ratos , Substância Negra/efeitos dos fármacos , Sinucleinopatias/genética , Sinucleinopatias/patologia , alfa-Sinucleína/biossíntese , alfa-Sinucleína/genética
6.
Front Neurosci ; 13: 590, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31244598

RESUMO

Cerebral dopamine neurotrophic factor (CDNF) has shown therapeutic potential in rodent and non-human primate models of Parkinson's disease by protecting the dopamine neurons from degeneration and even restoring their phenotype and function. Previously, neurorestorative efficacy of CDNF in the 6-hydroxydopamine (6-OHDA) model of Parkinson's disease as well as diffusion of the protein in the striatum (STR) has been demonstrated and studied. Here, experiments were performed to characterize the diffusion and transport of supra-nigral CDNF in non-lesioned rats. We injected recombinant human CDNF to the substantia nigra (SN) of naïve male Wistar rats and analyzed the brains 2, 6, and 24 h after injections. We performed immunohistochemical stainings using an antibody specific to human CDNF and radioactivity measurements after injecting iodinated CDNF. Unlike the previously reported striatonigral retrograde transport seen after striatal injection, active anterograde transport of CDNF to the STR could not be detected after nigral injection. There was, however, clear diffusion of CDNF to the brain areas surrounding the SN, and CDNF colocalized with tyrosine hydroxylase (TH)-positive neurons. Overall, our results provide insight on how CDNF injected to the SN may act in this region of the brain.

7.
Croat Med J ; 60(2): 99-108, 2019 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-31044581

RESUMO

Cerebral dopamine neurotrophic factor (CDNF) and mesencephalic astrocyte-derived neurotrophic factor (MANF) are proteins that have received increasing attention in the last decades. Although they are called neurotrophic factors they are drastically different from neurotrophic factors in their expression and physiological actions. They are located in the lumen of the endoplasmic reticulum (ER) and their basal secretion from neurons is very low. However their secretion is stimulated upon ER calcium depletion by chemical probes such as thapsigargin, a sarco/endoplasmic reticulum Ca2+-ATPase (SERCA) pump inhibitor. Exogenous MANF and CDNF possess therapeutic properties in several neurological disease models, including Parkinson disease and stroke. Endogenous MANF expression has been shown to be neuroprotective, as well as administration of either CDNF or MANF into the extracellular space. In this review, we focus on their therapeutic effects, regulation of expression and secretion, comparison of their mechanisms of action, and their application to the brain parenchyma as recombinant proteins.


Assuntos
Fatores de Crescimento Neural/uso terapêutico , Doença de Parkinson/tratamento farmacológico , Acidente Vascular Cerebral/tratamento farmacológico , Animais , Retículo Endoplasmático/metabolismo , Humanos , Fatores de Crescimento Neural/metabolismo , Fatores de Crescimento Neural/farmacologia , Neurônios/metabolismo , Relação Estrutura-Atividade
8.
J Neurosci Res ; 97(3): 346-361, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30548446

RESUMO

Adeno-associated virus (AAV) vector-mediated delivery of human α-synuclein (α-syn) gene in rat substantia nigra (SN) results in increased expression of α-syn protein in the SN and striatum which can progressively degenerate dopaminergic neurons. Therefore, this model is thought to recapitulate the neurodegeneration in Parkinson's disease. Here, using AAV to deliver α-syn above the SN in male and female rats resulted in clear expression of human α-syn in the SN and striatum. The protein was associated with moderate behavioral deficits and some loss of tyrosine hydroxylase (TH) in the nigrostriatal areas. However, the immunohistochemistry results were highly variable and showed little to no correlation with behavior and the amount of α-syn present. Expression of green fluorescent protein (GFP) was used as a control to monitor gene delivery and expression efficacy. AAV-GFP resulted in a similar or greater TH loss compared to AAV-α-syn and therefore an additional vector that does not express a protein was tested. Vectors with double-floxed inverse open reading frame (DIO ORF) encoding fluorescent proteins that generate RNA that is not translated also resulted in TH downregulation in the SN but showed no significant behavioral deficits. These results demonstrate that although expression of wild-type human α-syn can cause neurodegeneration, the variability and lack of correlation with outcome measures are drawbacks with the model. Furthermore, design and control selection should be considered carefully because of conflicting conclusions due to AAV downregulation of TH, and we recommend caution with having highly regulated TH as the only marker for the dopamine system.


Assuntos
Substância Negra/metabolismo , Tirosina 3-Mono-Oxigenase/metabolismo , alfa-Sinucleína/metabolismo , Animais , Dependovirus , Dopamina/metabolismo , Regulação para Baixo , Feminino , Humanos , Masculino , Modelos Animais , Doença de Parkinson/metabolismo , Ratos , Ratos Sprague-Dawley , Ratos Wistar
9.
eNeuro ; 5(2)2018.
Artigo em Inglês | MEDLINE | ID: mdl-29766045

RESUMO

Ischemic stroke is the leading cause of disability, and effective therapeutic strategies are needed to promote complete recovery. Neuroinflammation plays a significant role in stroke pathophysiology, and there is limited understanding of how it affects recovery. The aim of this study was to characterize the spatiotemporal expression profile of microglial activation and whether dampening microglial/macrophage activation post-stroke facilitates the recovery. For dampening microglial/macrophage activation, we chose intranasal administration of naloxone, a drug that is already in clinical use for opioid overdose and is known to decrease microglia/macrophage activation. We characterized the temporal progression of microglia/macrophage activation following cortical ischemic injury in rat and found the peak activation in cortex 7 d post-stroke. Unexpectedly, there was a chronic expression of phagocytic cells in the thalamus associated with neuronal loss. (+)-Naloxone, an enantiomer that reduces microglial activation without antagonizing opioid receptors, was administered intranasally starting 1 d post-stroke and continuing for 7 d. (+)-Naloxone treatment decreased microglia/macrophage activation in the striatum and thalamus, promoted behavioral recovery during the 14-d monitoring period, and reduced neuronal death in the lesioned cortex and ipsilateral thalamus. Our results are the first to show that post-stroke intranasal (+)-naloxone administration promotes short-term functional recovery and reduces microglia/macrophage activation. Therefore, (+)-naloxone is a promising drug for the treatment of ischemic stroke, and further studies should be conducted.


Assuntos
Isquemia Encefálica/tratamento farmacológico , Córtex Cerebral/efeitos dos fármacos , Corpo Estriado/efeitos dos fármacos , Ativação de Macrófagos/efeitos dos fármacos , Microglia/efeitos dos fármacos , Naloxona/farmacologia , Antagonistas de Entorpecentes/farmacologia , Acidente Vascular Cerebral/tratamento farmacológico , Tálamo/efeitos dos fármacos , Administração Intranasal , Animais , Comportamento Animal/efeitos dos fármacos , Modelos Animais de Doenças , Naloxona/administração & dosagem , Antagonistas de Entorpecentes/administração & dosagem , Ratos , Ratos Sprague-Dawley
10.
Exp Brain Res ; 235(7): 2189-2202, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28439627

RESUMO

Proteinaceous inclusions, called Lewy bodies, are used as a pathological hallmark for Parkinson's disease (PD). Lewy bodies contain insoluble α-synuclein (aSyn) and many other ubiquitinated proteins, suggesting a role for protein degradation system failure in the PD pathogenesis. Indeed, proteasomal dysfunction has been linked to PD but commonly used in vivo toxin models, such as 6-OHDA or MPTP, do not have a significant effect on the proteasomal system or protein aggregation. Therefore, we wanted to study the characteristics of a proteasomal inhibitor, lactacystin, as a PD model on young and adult mice. To study this, we performed stereotactic microinjection of lactacystin above the substantia nigra pars compacta in young (2 month old) and adult (12-14 month old) C57Bl/6 mice. Motor behavior was measured by locomotor activity and cylinder tests, and the markers of neuroinflammation, aSyn, and dopaminergic system were assessed by immunohistochemistry and HPLC. We found that lactacystin induced a Parkinson's disease-like motor phenotype 5-7 days after injection in young and adult mice, and this was associated with widespread neuroinflammation based on glial cell markers, aSyn accumulation in substantia nigra, striatal dopamine decrease, and loss of dopaminergic cell bodies in the substantia nigra and terminals in the striatum. When comparing young and adult mice, adult mice were more sensitive for dopaminergic degeneration after lactacystin injection that further supports the use of adult mice instead of young when modeling neurodegeneration. Our data showed that lactacystin is useful in modeling various aspects of Parkinson's disease, and taken together, our findings emphasize the role of a protein degradation deficit in Parkinson's disease pathology, and support the use of proteasomal inhibitors as Parkinson's disease models.


Assuntos
Acetilcisteína/análogos & derivados , Inibidores de Cisteína Proteinase/toxicidade , Neuroglia/efeitos dos fármacos , Doença de Parkinson/etiologia , Doença de Parkinson/patologia , Substância Negra/efeitos dos fármacos , Acetilcisteína/toxicidade , Fatores Etários , Animais , Proteínas de Ligação ao Cálcio/metabolismo , Modelos Animais de Doenças , Membro Anterior/fisiopatologia , Proteína Glial Fibrilar Ácida/metabolismo , Glutamato Descarboxilase/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteínas dos Microfilamentos/metabolismo , Microinjeções , Neurotransmissores/metabolismo , Desempenho Psicomotor/efeitos dos fármacos , Sinucleínas/metabolismo , Tirosina 3-Mono-Oxigenase/metabolismo
11.
Genes (Basel) ; 8(2)2017 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-28208742

RESUMO

Gene delivery using adeno-associated virus (AAV) vectors is a widely used method to transduce neurons in the brain, especially due to its safety, efficacy, and long-lasting expression. In addition, by varying AAV serotype, promotor, and titer, it is possible to affect the cell specificity of expression or the expression levels of the protein of interest. Dopamine neurons in the substantia nigra projecting to the striatum, comprising the nigrostriatal pathway, are involved in movement control and degenerate in Parkinson's disease. AAV-based gene targeting to the projection area of these neurons in the striatum has been studied extensively to induce the production of neurotrophic factors for disease-modifying therapies for Parkinson's disease. Much less emphasis has been put on AAV-based gene therapy targeting dopamine neurons in substantia nigra. We will review the literature related to targeting striatum and/or substantia nigra dopamine neurons using AAVs in order to express neuroprotective and neurorestorative molecules, as well as produce animal disease models of Parkinson's disease. We discuss difficulties in targeting substantia nigra dopamine neurons and their vulnerability to stress in general. Therefore, choosing a proper control for experimental work is not trivial. Since the axons along the nigrostriatal tract are the first to degenerate in Parkinson's disease, the location to deliver the therapy must be carefully considered. We also review studies using AAV-a-synuclein (a-syn) to target substantia nigra dopamine neurons to produce an α-syn overexpression disease model in rats. Though these studies are able to produce mild dopamine system degeneration in the striatum and substantia nigra and some behavioural effects, there are studies pointing to the toxicity of AAV-carrying green fluorescent protein (GFP), which is often used as a control. Therefore, we discuss the potential difficulties in overexpressing proteins in general in the substantia nigra.

12.
J Neurosci Res ; 94(4): 318-28, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26762168

RESUMO

Intrastriatal administration of 6-hydroxydopamine (6-OHDA) induces partial degeneration of the nigrostriatal pathway, mimicking the pathology of Parkinson's disease (PD). Setting up the partial lesion model can be challenging because a number of experimental settings can be altered. This study compares seven experimental settings in a single study on d-amphetamine-induced rotations, tyrosine hydroxylase (TH)-positive neurites in the striatum, dopamine transporter (DAT)-positive neurites in the striatum, and TH-positive cells in the substantia nigra pars compacta (SNpc) in rats. Moreover, we validate a new algorithm for estimating the number of TH-positive cells. We show that the behavior and immunoreactivity vary greatly depending on the injection settings, and we categorize the lesions as progressive, stable, or regressive based on d-amphetamine-induced rotations. The rotation behavior correlated with the degree of the lesion, analyzed by immunohistochemistry; the largest lesions were in the progressive group, and the smallest lesions were in the regressive group. We establish a new low-dose partial 6-OHDA lesion model in which a total of 6 µg was distributed evenly to three sites in the striatum at a 10° angle. The administration of low-dose 6-OHDA produced stable and reliable rotation behavior and induced partial loss of striatal TH-positive and DAT-positive neurites and TH-positive cells in the SNpc. This model is highly suitable for neurorestoration studies in the search for new therapies for PD, and the new algorithm increases the efficacy for estimating the number of dopamine neurons. This study can be extremely useful for laboratories setting up the partial 6-OHDA model.


Assuntos
Adrenérgicos/administração & dosagem , Adrenérgicos/toxicidade , Modelos Animais de Doenças , Oxidopamina/administração & dosagem , Oxidopamina/toxicidade , Transtornos Parkinsonianos , Animais , Corpo Estriado/efeitos dos fármacos , Neurônios Dopaminérgicos/efeitos dos fármacos , Imuno-Histoquímica , Injeções Intraventriculares , Masculino , Ratos , Ratos Wistar
13.
Behav Brain Res ; 228(1): 194-202, 2012 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-22182675

RESUMO

Administration of the noncompetitive N-methyl-d-aspartate (NMDA)-receptor antagonist (+)-5-methyl-10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5,10-imine maleate (MK-801) has been shown to produce extinction deficits on appetitive operant tasks. The present study sought to further explore this by comparing extinction pressing to pressing for the primary reward and examining associated neural correlates to determine if the MK-801 extinction profile resembled the behavioral and neural profile associated with pressing for primary reward. Immunohistochemical labeling of phosphorylated extracellular signal-regulated kinase-1 and -2(pERK1/2) in the prelimbic (PrL) and infralimbic (IL) cortices and nucleus accumbens shell (AcbSh) and core (AcbC) was examined after rewarded or extinction lever pressing conditions. A dose-response curve revealed a within-day extinction deficit following administration of 0.05 mg/kg MK-801. All doses of MK-801 were associated with reduced IL pERK1/2 staining but only the 0.05 mg/kg dose was associated with elevated AcbSh pERK1/2 labeling. Extinction pressing under the influence of MK-801 was elevated compared to that seen during rewarded pressing-whether on MK-801 or saline. Rewarded pressing following saline or MK-801 was associated with elevated pERK1/2 in the PrL with no similar patterns in the MK-801/extinction group. There was more pERK1/2 labeling in the AcbSh of the MK-801 extinction group than any other condition. These data suggest that the MK-801-induced extinction deficit may be due to the combination of an underactive cortical behavioral inhibition system and an overactive AcbSh reward system.


Assuntos
Condicionamento Operante/fisiologia , Maleato de Dizocilpina/farmacologia , Extinção Psicológica/fisiologia , Sistema de Sinalização das MAP Quinases/fisiologia , Núcleo Accumbens/metabolismo , Córtex Pré-Frontal/metabolismo , Recompensa , Animais , Condicionamento Operante/efeitos dos fármacos , Relação Dose-Resposta a Droga , Antagonistas de Aminoácidos Excitatórios/farmacologia , Extinção Psicológica/efeitos dos fármacos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Masculino , Núcleo Accumbens/efeitos dos fármacos , Córtex Pré-Frontal/efeitos dos fármacos , Ratos , Ratos Long-Evans
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...