Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.029
Filtrar
1.
J Am Chem Soc ; 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38749497

RESUMO

An important yet challenging aspect of atomistic materials modeling is reconciling experimental and computational results. Conventional approaches involve generating numerous configurations through molecular dynamics or Monte Carlo structure optimization and selecting the one with the closest match to experiment. However, this inefficient process is not guaranteed to succeed. We introduce a general method to combine atomistic machine learning (ML) with experimental observables that produces atomistic structures compatible with experiment by design. We use this approach in combination with grand-canonical Monte Carlo within a modified Hamiltonian formalism, to generate configurations that agree with experimental data and are chemically sound (low in energy). We apply our approach to understand the atomistic structure of oxygenated amorphous carbon (a-COx), an intriguing carbon-based material, to answer the question of how much oxygen can be added to carbon before it fully decomposes into CO and CO2. Utilizing an ML-based X-ray photoelectron spectroscopy (XPS) model trained from GW and density functional theory (DFT) data, in conjunction with an ML interatomic potential, we identify a-COx structures compliant with experimental XPS predictions that are also energetically favorable with respect to DFT. Employing a network analysis, we accurately deconvolve the XPS spectrum into motif contributions, both revealing the inaccuracies inherent to experimental XPS interpretation and granting us atomistic insight into the structure of a-COx. This method generalizes to multiple experimental observables and allows for the elucidation of the atomistic structure of materials directly from experimental data, thereby enabling experiment-driven materials modeling with a degree of realism previously out of reach.

2.
Eur Radiol Exp ; 8(1): 46, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38594558

RESUMO

BACKGROUND: Monitoring pyruvate metabolism in the spleen is important for assessing immune activity and achieving successful radiotherapy for cervical cancer due to the significance of the abscopal effect. We aimed to explore the feasibility of utilizing hyperpolarized (HP) [1-13C]-pyruvate magnetic resonance imaging (MRI) and magnetic resonance spectroscopy (MRS) to evaluate pyruvate metabolism in the human spleen, with the aim of identifying potential candidates for radiotherapy in cervical cancer. METHODS: This prospective study recruited six female patients with cervical cancer (median age 55 years; range 39-60) evaluated using HP [1-13C]-pyruvate MRI/MRS at baseline and 2 weeks after radiotherapy. Proton (1H) diffusion-weighted MRI was performed in parallel to estimate splenic cellularity. The primary outcome was defined as tumor response to radiotherapy. The Student t-test was used for comparing 13C data between the groups. RESULTS: The splenic HP [1-13C]-lactate-to-total carbon (tC) ratio was 5.6-fold lower in the responders than in the non-responders at baseline (p = 0.009). The splenic [1-13C]-lactate-to-tC ratio revealed a 1.7-fold increase (p = 0.415) and the splenic [1-13C]-alanine-to-tC ratio revealed a 1.8-fold increase after radiotherapy (p = 0.482). The blood leukocyte differential count revealed an increased proportion of neutrophils two weeks following treatment, indicating enhanced immune activity (p = 0.013). The splenic apparent diffusion coefficient values between the groups were not significantly different. CONCLUSIONS: This exploratory study revealed the feasibility of HP [1-13C]-pyruvate MRS of the spleen for evaluating baseline immune potential, which was associated with clinical outcomes of cervical cancer after radiotherapy. TRIAL REGISTRATION: ClinicalTrials.gov NCT04951921 , registered 7 July 2021. RELEVANCE STATEMENT: This prospective study revealed the feasibility of using HP 13C MRI/MRS for assessing pyruvate metabolism of the spleen to evaluate the patients' immune potential that is associated with radiotherapeutic clinical outcomes in cervical cancer. KEY POINTS: • Effective radiotherapy induces abscopal effect via altering immune metabolism. • Hyperpolarized 13C MRS evaluates patients' immune potential non-invasively. • Pyruvate-to-lactate conversion in the spleen is elevated following radiotherapy.


Assuntos
Ácido Pirúvico , Neoplasias do Colo do Útero , Humanos , Feminino , Pessoa de Meia-Idade , Ácido Pirúvico/metabolismo , Neoplasias do Colo do Útero/diagnóstico por imagem , Neoplasias do Colo do Útero/radioterapia , Estudos Prospectivos , Espectroscopia de Ressonância Magnética Nuclear de Carbono-13/métodos , Lactatos
3.
Adv Mater ; : e2402559, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38627932

RESUMO

Liquid crystal elastomer (LCE) actuators are generally limited in shape, size, and quantity by the need for aligning via stretching and fixing via photopolymerizing. A thermoplastic LCE is presented that may be vacuum thermoformed into centimeter-sized hemispheres. The scalable industrial process induces LCE alignment without requiring postfixing. The hemispheres display remarkable properties, actuating with strains around 20% and transitioning from opaque and scattering to highly translucent upon heating: both the physical and optical effects are fully reversible. Simulations reveal the LCE experiences biaxial strains during processing, the magnitude varying as a function of location on the hemisphere: the resulting alignment describing the hemisphere actuation well. The thermoplastic LCE hemispheres may be combined to form complete spheres by simply heating the joint. The hemisphere can also be physically deformed into a ball which can then unfold back into the hemisphere again. By doping the hemispheres with photoswitches, fluorescent or photothermal dyes, devices are formed for light collection and redistribution, addressable water containers that may pour at will, and light-responsive surfing devices. This is the first example of an LCE amenable to high-volume industrial vacuum thermoforming which may lead to intricate 3D-shaped actuators with new functional properties.

4.
Cancers (Basel) ; 16(8)2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38672634

RESUMO

There is growing recognition of early-onset gastrointestinal (GI) malignancies in young adults < 50 years of age. While much of the literature has emphasized colorectal cancer, these also include esophageal, gastric, liver, pancreatic, and biliary tract malignancies. Various factors, including lifestyle, hereditary, and environmental elements, have been proposed to explain the rising incidence of GI malignancies in the younger population. This review aims to provide an overview of the recent literature, including global trends and information regarding genetic and environmental risk factors.

5.
ACS Appl Mater Interfaces ; 16(17): 22696-22703, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38646711

RESUMO

4D microstructured actuators are micro-objects made of stimuli-responsive materials capable of induced shape deformations, with applications ranging from microrobotics to smart micropatterned haptic surfaces. The novel technology dual-wavelength volumetric microlithography (DWVML) realizes rapid printing of high-resolution 3D microstructures and so has the potential to pave the way to feasible manufacturing of 4D microdevices. In this work, DWVML is applied for the first time to printing stimuli-responsive materials, namely, liquid crystal networks (LCNs). An LCN photoresist is developed and characterized, and large arrays of up to 5625 LCN micropillars with programmable shape changes are produced by means of DWVML in the time span of seconds, over areas as large as ∼5.4 mm2. The production rate of 0.24 mm3 h-1 is achieved, exceeding speeds previously reported for additive manufacturing of LCNs by 2 orders of magnitude. Finally, a membrane with tunable, micrometer-sized pores is fabricated to illustrate the potential DWVML holds for real-world applications.

6.
ACS Appl Mater Interfaces ; 16(11): 14144-14151, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38448425

RESUMO

Sticky-colored labels are an efficient way to communicate visual information. However, most labels are static. Here, we propose a new category of dynamic sticky labels that change structural colors when stretched. The sticky mechanochromic labels can be pasted on flexible surfaces such as fabric and rubber or even on brittle materials. To enhance their applicability, we demonstrate a simple method for imprinting structural color patterns that are either always visible or reversibly revealed or concealed upon mechanical deformation. The mechanochromic patterns are imprinted with a photomask during the ultraviolet (UV) cross-linking of acrylate-terminated cholesteric liquid crystal oligomers in a single step at room temperature. The photomask locally controls the cross-linking degree and volumetric response of the cholesteric liquid crystal elastomers (CLCEs). A nonuniform thickness change induced by the Poisson's ratio contrast between the pattern and the surrounding background might lead to a color-separation effect. Our sticky multicolor mechanochromic labels may be utilized in stress-strain sensing, building environments, smart clothing, security labels, and decoration.

7.
Magn Reson Med ; 91(6): 2204-2228, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38441968

RESUMO

MRI with hyperpolarized (HP) 13C agents, also known as HP 13C MRI, can measure processes such as localized metabolism that is altered in numerous cancers, liver, heart, kidney diseases, and more. It has been translated into human studies during the past 10 years, with recent rapid growth in studies largely based on increasing availability of HP agent preparation methods suitable for use in humans. This paper aims to capture the current successful practices for HP MRI human studies with [1-13C]pyruvate-by far the most commonly used agent, which sits at a key metabolic junction in glycolysis. The paper is divided into four major topic areas: (1) HP 13C-pyruvate preparation; (2) MRI system setup and calibrations; (3) data acquisition and image reconstruction; and (4) data analysis and quantification. In each area, we identified the key components for a successful study, summarized both published studies and current practices, and discuss evidence gaps, strengths, and limitations. This paper is the output of the "HP 13C MRI Consensus Group" as well as the ISMRM Hyperpolarized Media MR and Hyperpolarized Methods and Equipment study groups. It further aims to provide a comprehensive reference for future consensus, building as the field continues to advance human studies with this metabolic imaging modality.


Assuntos
Imageamento por Ressonância Magnética , Ácido Pirúvico , Humanos , Ácido Pirúvico/metabolismo , Imageamento por Ressonância Magnética/métodos , Processamento de Imagem Assistida por Computador , Coração , Fígado/diagnóstico por imagem , Fígado/metabolismo , Isótopos de Carbono/metabolismo
8.
bioRxiv ; 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38352450

RESUMO

Hyperpolarized- 13 C magnetic resonance imaging (HP- 13 C MRI) was used to image changes in 13 C-lactate signal during a visual stimulus condition in comparison to an eyes-closed control condition. Whole-brain 13 C-pyruvate, 13 C-lactate and 13 C-bicarbonate production was imaged in healthy volunteers (N=6, ages 24-33) for the two conditions using two separate hyperpolarized 13 C-pyruvate injections. BOLD-fMRI scans were used to delineate regions of functional activation. 13 C-metabolite signal was normalized by 13 C-metabolite signal from the brainstem and the percentage change in 13 C-metabolite signal conditions was calculated. A one-way Wilcoxon signed-rank test showed a significant increase in 13 C-lactate in regions of activation when compared to the remainder of the brain ( p = 0.02, V = 21). No significant increase was observed in 13 C-pyruvate ( p = 0.11, V = 17) or 13 C-bicarbonate ( p = 0.95, V = 3) signal. The results show an increase in 13 C-lactate production in the activated region that is measurable with HP- 13 C MRI.

9.
Heliyon ; 10(4): e25934, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38384510

RESUMO

The railway industry has witnessed increasing adoption of digital technologies, known as Railway 4.0, that is revolutionizing operations, infrastructure, and transportation systems. However, developing countries face challenges in keeping pace with these technological advancements. With limited research on Railway 4.0 adoption in developing countries, this study was motivated to investigate the awareness, readiness, and challenges faced by railway professionals towards implementing Railway 4.0 technologies. The aim was to assess the level of awareness and preparedness and identify the key challenges influencing Railway 4.0 adoption in Nigeria's railway construction industry. A questionnaire survey (was distributed to professionals in the railway construction sector to gather their perspectives on awareness of, preparation for, and challenges associated with the use of Railway 4.0 technologies. The results revealed that awareness of Railway 4.0 technologies was moderate, while readiness was low among the professionals. Using exploratory factor analysis, 10 underlying challenge constructs were identified including lack of technical know-how, resistance to change, infrastructure limitations, and uncertainty about benefits, amongst others. Partial Least Square Structural Equation Modelling (PLS-SEM) confirmed these constructs, with reliability and availability, lack of technical know-how, lack of training and resources, and uncertainties in benefit and gains having significant influence on awareness and readiness. The study concludes that focused efforts in training, infrastructure improvement, supportive policies, and communicating the advantages of Railway 4.0 are critical to drive adoption in Nigeria and other developing economies. The findings provide insights into tailoring Railway 4.0 implementation strategies for developing contexts.

10.
Medicina (Kaunas) ; 60(2)2024 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-38399500

RESUMO

A percutaneous cholecystostomy tube (PCT) is the conventionally favored nonoperative intervention for treating acute cholecystitis. However, PCT is beset by high adverse event rates, need for scheduled reintervention, and inadvertent dislodgement, as well as patient dissatisfaction with a percutaneous drain. Recent advances in endoscopic therapy involve the implementation of endoscopic transpapillary drainage (ETP-GBD) and endoscopic ultrasound-guided gallbladder drainage (EUS-GBD), which are increasingly preferred over PCT due to their favorable technical and clinical success combined with lower complication rates. In this article, we provide a comprehensive review of the literature on EUS-GBD and ETP-GBD, delineating instances when clinicians should opt for endoscopic management and highlighting potential risks associated with each approach.


Assuntos
Colecistite Aguda , Humanos , Colecistite Aguda/diagnóstico por imagem , Colecistite Aguda/cirurgia , Colecistite Aguda/etiologia , Endossonografia , Drenagem/efeitos adversos , Stents , Ultrassonografia de Intervenção
12.
Magn Reson Med ; 91(5): 2162-2171, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38230992

RESUMO

PURPOSE: To test the hypothesis that lactate oxidation contributes to the 13 $$ {}^{13} $$ C-bicarbonate signal observed in the awake human brain using hyperpolarized 13 $$ {}^{13} $$ C MRI. METHODS: Healthy human volunteers (N = 6) were scanned twice using hyperpolarized 13 $$ {}^{13} $$ C-MRI, with increased radiofrequency saturation of 13 $$ {}^{13} $$ C-lactate on one set of scans. 13 $$ {}^{13} $$ C-lactate, 13 $$ {}^{13} $$ C-bicarbonate, and 13 $$ {}^{13} $$ C-pyruvate signals for 132 brain regions across each set of scans were compared using a clustered Wilcoxon signed-rank test. RESULTS: Increased 13 $$ {}^{13} $$ C-lactate radiofrequency saturation resulted in a significantly lower 13 $$ {}^{13} $$ C-bicarbonate signal (p = 0.04). These changes were observed across the majority of brain regions. CONCLUSION: Radiofrequency saturation of 13 $$ {}^{13} $$ C-lactate leads to a decrease in 13 $$ {}^{13} $$ C-bicarbonate signal, demonstrating that the 13 $$ {}^{13} $$ C-lactate generated from the injected 13 $$ {}^{13} $$ C-pyruvate is being converted back to 13 $$ {}^{13} $$ C-pyruvate and oxidized throughout the human brain.


Assuntos
Bicarbonatos , Imageamento por Ressonância Magnética , Humanos , Imageamento por Ressonância Magnética/métodos , Encéfalo/diagnóstico por imagem , Ácido Pirúvico , Ácido Láctico , Isótopos de Carbono
13.
Chemistry ; 30(19): e202304236, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38265541

RESUMO

Cholesteric liquid crystal oligomers are an interesting class of temperature responsive structurally colored materials. However, the role of endcap molecules in these oligomers is rather unexplored. In this work, we demonstrate the role of endcap molecules on structural color stability and hypsochromic shift in temperature-responsive cholesteric liquid crystal oligomers. First, new liquid crystal monoacrylate endcap molecules are synthesized, which are then used to synthesize various cholesteric liquid crystal oligomers. In addition, cholesteric oligomers using commercial monoacrylate endcap molecules are also prepared. It is found that the molecular weight and the polydispersity of the oligomers can be tuned by the endcapping molecules. The oligomers are used to produce reflective, structurally colored coatings. It was found that the coatings using the commercial monoacrylate lose their color and crystallize over time, most likely due to the presence of crystalline dimers. The coatings containing the newly synthesized monoacrylate endcap molecules did not exhibit this crystallization, resulting in structurally colored coatings that remained stable over time. These latter coatings possessed temperature responsive hypochromic behavior, which makes them interesting for advanced optical applications.

14.
J Chem Phys ; 159(17)2023 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-37929869

RESUMO

Gaussian Approximation Potentials (GAPs) are a class of Machine Learned Interatomic Potentials routinely used to model materials and molecular systems on the atomic scale. The software implementation provides the means for both fitting models using ab initio data and using the resulting potentials in atomic simulations. Details of the GAP theory, algorithms and software are presented, together with detailed usage examples to help new and existing users. We review some recent developments to the GAP framework, including Message Passing Interface parallelisation of the fitting code enabling its use on thousands of central processing unit cores and compression of descriptors to eliminate the poor scaling with the number of different chemical elements.

15.
Cardiovasc Diabetol ; 22(1): 294, 2023 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-37891673

RESUMO

BACKGROUND: The PI3K/AKT pathway transduces the majority of the metabolic actions of insulin. In addition to cytosolic targets, insulin-stimulated phospho-AKT also translocates to mitochondria in the myocardium. Mouse models of diabetes exhibit impaired mitochondrial AKT signaling but the implications of this on cardiac structure and function is unknown. We hypothesized that loss of mitochondrial AKT signaling is a critical step in cardiomyopathy and reduces cardiac oxidative phosphorylation. METHODS: To focus our investigation on the pathophysiological consequences of this mitochondrial signaling pathway, we generated transgenic mouse models of cardiac-specific, mitochondria-targeting, dominant negative AKT1 (CAMDAKT) and constitutively active AKT1 expression (CAMCAKT). Myocardial structure and function were examined using echocardiography, histology, and biochemical assays. We further investigated the underlying effects of mitochondrial AKT1 on mitochondrial structure and function, its interaction with ATP synthase, and explored in vivo metabolism beyond the heart. RESULTS: Upon induction of dominant negative mitochondrial AKT1, CAMDAKT mice developed cardiac fibrosis accompanied by left ventricular hypertrophy and dysfunction. Cardiac mitochondrial oxidative phosphorylation efficiency and ATP content were reduced, mitochondrial cristae structure was lost, and ATP synthase structure was compromised. Conversely, CAMCAKT mice were protected against development of diabetic cardiomyopathy when challenged with a high calorie diet. Activation of mitochondrial AKT1 protected cardiac function and increased fatty acid uptake in myocardium. In addition, total energy expenditure was increased in CAMCAKT mice, accompanied by reduced adiposity and reduced development of fatty liver. CONCLUSION: CAMDAKT mice modeled the effects of impaired mitochondrial signaling which occurs in the diabetic myocardium. Disruption of this pathway is a key step in the development of cardiomyopathy. Activation of mitochondrial AKT1 in CAMCAKT had a protective role against diabetic cardiomyopathy as well as improved metabolism beyond the heart.


Assuntos
Diabetes Mellitus , Cardiomiopatias Diabéticas , Proteínas Proto-Oncogênicas c-akt , Animais , Camundongos , Trifosfato de Adenosina/metabolismo , Diabetes Mellitus/metabolismo , Cardiomiopatias Diabéticas/diagnóstico por imagem , Cardiomiopatias Diabéticas/etiologia , Cardiomiopatias Diabéticas/metabolismo , Metabolismo Energético , Insulina/farmacologia , Camundongos Transgênicos , Mitocôndrias Cardíacas/metabolismo , Miocárdio/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo
16.
Adv Sci (Weinh) ; 10(31): e2303136, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37740666

RESUMO

The extracellular environment defines a physical boundary condition with which cells interact. However, to date, cell response to geometrical environmental cues is largely studied in static settings, which fails to capture the spatiotemporally varying cues cells receive in native tissues. Here, a photoresponsive spiropyran-based hydrogel is presented as a dynamic, cell-compatible, and reconfigurable substrate. Local stimulation with blue light (455 nm) alters hydrogel swelling, resulting in on-demand reversible micrometer-scale changes in surface topography within 15 min, allowing investigation into cell response to controlled geometry actuations. At short term (1 h after actuation), fibroblasts respond to multiple rounds of recurring topographical changes by reorganizing their nucleus and focal adhesions (FA). FAs form primarily at the dynamic regions of the hydrogel; however, this propensity is abolished when the topography is reconfigured from grooves to pits, demonstrating that topographical changes dynamically condition fibroblasts. Further, this dynamic conditioning is found to be associated with long-term (72 h) maintenance of focal adhesions and epigenetic modifications. Overall, this study offers a new approach to dissect the dynamic interplay between cells and their microenvironment and shines a new light on the cell's ability to adapt to topographical changes through FA-based mechanotransduction.


Assuntos
Hidrogéis , Mecanotransdução Celular , Luz , Epigênese Genética
17.
ArXiv ; 2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-37731660

RESUMO

MRI with hyperpolarized (HP) 13C agents, also known as HP 13C MRI, can measure processes such as localized metabolism that is altered in numerous cancers, liver, heart, kidney diseases, and more. It has been translated into human studies during the past 10 years, with recent rapid growth in studies largely based on increasing availability of hyperpolarized agent preparation methods suitable for use in humans. This paper aims to capture the current successful practices for HP MRI human studies with [1-13C]pyruvate - by far the most commonly used agent, which sits at a key metabolic junction in glycolysis. The paper is divided into four major topic areas: (1) HP 13C-pyruvate preparation, (2) MRI system setup and calibrations, (3) data acquisition and image reconstruction, and (4) data analysis and quantification. In each area, we identified the key components for a successful study, summarized both published studies and current practices, and discuss evidence gaps, strengths, and limitations. This paper is the output of the "HP 13C MRI Consensus Group" as well as the ISMRM Hyperpolarized Media MR and Hyperpolarized Methods & Equipment study groups. It further aims to provide a comprehensive reference for future consensus building as the field continues to advance human studies with this metabolic imaging modality.

18.
J Am Chem Soc ; 145(35): 19347-19353, 2023 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-37609696

RESUMO

Charge transfer complexes (CTCs) based on self-assembled donor and acceptor molecules allow light absorption of significantly redshifted wavelengths to either the donor or acceptor. In this work, we demonstrate a CTC embedded in a hydrogen-bonded liquid crystal elastomer (LCE), which in itself is fully reformable and reprocessable. The LCE host acts as a gate, directing the self-assembly of the CTC. When hydrogen bonding is present, the CTC behaves as a near-infrared (NIR) dye allowing photothermal actuation of the LCE. The CTC can be disassembled in specific regions of the LCE film by disrupting the hydrogen bond interactions, allowing selective NIR heating and localized actuation of the films. The metastable non-CTC state may persist for weeks or can be recovered on demand by heat treatment. Besides the CTC variability, the capability of completely reforming the shape, color, and actuation mode of the LCE provides an interactive material with unprecedented application versatility.

19.
Nat Mater ; 22(9): 1053-1054, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37550569
20.
J Chem Phys ; 159(4)2023 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-37497818

RESUMO

Machine learning (ML) methods are of rapidly growing interest for materials modeling, and yet, the use of ML interatomic potentials for new systems is often more demanding than that of established density-functional theory (DFT) packages. Here, we describe computational methodology to combine the CASTEP first-principles simulation software with the on-the-fly fitting and evaluation of ML interatomic potential models. Our approach is based on regular checking against DFT reference data, which provides a direct measure of the accuracy of the evolving ML model. We discuss the general framework and the specific solutions implemented, and we present an example application to high-temperature molecular-dynamics simulations of carbon nanostructures. The code is freely available for academic research.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...