Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Methods Mol Biol ; 2672: 129-139, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37335472

RESUMO

Procedures to arrest metaphase chromosomes are used for determining chromosome numbers, chromosomal aberrations, and natural chromosome variation, as well as chromosome sorting. Here is described a technique of nitrous oxide gas treatment of freshly harvested root tips that is highly effective at producing an excellent mitotic index together with well-spread chromosomes. The details of the treatment and equipment used are provided. The metaphase spreads can be used directly for determining chromosome numbers or for in situ hybridization to reveal chromosomal features.


Assuntos
Aberrações Cromossômicas , Óxido Nitroso , Humanos , Metáfase , Cromossomos , Hibridização In Situ
2.
G3 (Bethesda) ; 13(6)2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37002915

RESUMO

Poa pratensis, commonly known as Kentucky bluegrass, is a popular cool-season grass species used as turf in lawns and recreation areas globally. Despite its substantial economic value, a reference genome had not previously been assembled due to the genome's relatively large size and biological complexity that includes apomixis, polyploidy, and interspecific hybridization. We report here a fortuitous de novo assembly and annotation of a P. pratensis genome. Instead of sequencing the genome of a C4 grass, we accidentally sampled and sequenced tissue from a weedy P. pratensis whose stolon was intertwined with that of the C4 grass. The draft assembly consists of 6.09 Gbp with an N50 scaffold length of 65.1 Mbp, and a total of 118 scaffolds, generated using PacBio long reads and Bionano optical map technology. We annotated 256K gene models and found 58% of the genome to be composed of transposable elements. To demonstrate the applicability of the reference genome, we evaluated population structure and estimated genetic diversity in P. pratensis collected from three North American prairies, two in Manitoba, Canada and one in Colorado, USA. Our results support previous studies that found high genetic diversity and population structure within the species. The reference genome and annotation will be an important resource for turfgrass breeding and study of bluegrasses.


Assuntos
Melhoramento Vegetal , Poa , Genoma , Poa/genética , Plantas Daninhas/genética , Sequência de Bases , Anotação de Sequência Molecular
3.
Proc Natl Acad Sci U S A ; 118(23)2021 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-34088847

RESUMO

B chromosomes are enigmatic elements in thousands of plant and animal genomes that persist in populations despite being nonessential. They circumvent the laws of Mendelian inheritance but the molecular mechanisms underlying this behavior remain unknown. Here we present the sequence, annotation, and analysis of the maize B chromosome providing insight into its drive mechanism. The sequence assembly reveals detailed locations of the elements involved with the cis and trans functions of its drive mechanism, consisting of nondisjunction at the second pollen mitosis and preferential fertilization of the egg by the B-containing sperm. We identified 758 protein-coding genes in 125.9 Mb of B chromosome sequence, of which at least 88 are expressed. Our results demonstrate that transposable elements in the B chromosome are shared with the standard A chromosome set but multiple lines of evidence fail to detect a syntenic genic region in the A chromosomes, suggesting a distant origin. The current gene content is a result of continuous transfer from the A chromosomal complement over an extended evolutionary time with subsequent degradation but with selection for maintenance of this nonvital chromosome.


Assuntos
Cromossomos de Plantas/genética , Evolução Molecular , Pólen/genética , Proteínas da Gravidez/genética , Zea mays/genética , Meiose/genética , Mitose/genética
4.
Plant Cell ; 33(4): 917-939, 2021 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-33677584

RESUMO

Genomic imbalance caused by changing the dosage of individual chromosomes (aneuploidy) has a more detrimental effect than varying the dosage of complete sets of chromosomes (ploidy). We examined the impact of both increased and decreased dosage of 15 distal and 1 interstitial chromosomal regions via RNA-seq of maize (Zea mays) mature leaf tissue to reveal new aspects of genomic imbalance. The results indicate that significant changes in gene expression in aneuploids occur both on the varied chromosome (cis) and the remainder of the genome (trans), with a wider spread of modulation compared with the whole-ploidy series of haploid to tetraploid. In general, cis genes in aneuploids range from a gene-dosage effect to dosage compensation, whereas for trans genes the most common effect is an inverse correlation in that expression is modulated toward the opposite direction of the varied chromosomal dosage, although positive modulations also occur. Furthermore, this analysis revealed the existence of increased and decreased effects in which the expression of many genes under genome imbalance are modulated toward the same direction regardless of increased or decreased chromosomal dosage, which is predicted from kinetic considerations of multicomponent molecular interactions. The findings provide novel insights into understanding mechanistic aspects of gene regulation.


Assuntos
Diploide , Regulação da Expressão Gênica de Plantas , Zea mays/genética , Aneuploidia , Cromossomos de Plantas , Mecanismo Genético de Compensação de Dose , Genoma de Planta , Ploidias
5.
Chromosome Res ; 28(2): 183-194, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32219602

RESUMO

Maize was one of the first eukaryotic species in which individual chromosomes can be identified cytologically, which made maize one of the oldest models for genetics and cytogenetics research. Nevertheless, consistent identification of all 10 chromosomes from different maize lines as well as from wild Zea species remains a challenge. We developed a new technique for maize chromosome identification based on fluorescence in situ hybridization (FISH). We developed two oligonucleotide-based probes that hybridize to 24 chromosomal regions. Individual maize chromosomes show distinct FISH signal patterns, which allow universal identification of all chromosomes from different Zea species. We developed karyotypes from three Zea mays subspecies and two additional wild Zea species based on individually identified chromosomes. A paracentric inversion was discovered on the long arm of chromosome 4 in Z. nicaraguensis and Z. luxurians based on modifications of the FISH signal patterns. Chromosomes from these two species also showed distinct distribution patterns of terminal knobs compared with other Zea species. These results support that Z. nicaraguensis and Z. luxurians are closely related species.


Assuntos
Cromossomos de Plantas , Citogenética , Cariotipagem , Zea mays/classificação , Zea mays/genética , Inversão Cromossômica , Citogenética/métodos , Hibridização in Situ Fluorescente , Cariotipagem/métodos , Sondas de Oligonucleotídeos
6.
Genetics ; 213(1): 143-160, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31320409

RESUMO

In the course of generating populations of maize with teosinte chromosomal introgressions, an unusual sickly plant phenotype was noted in individuals from crosses with two teosinte accessions collected near Valle de Bravo, Mexico. The plants of these Bravo teosinte accessions appear phenotypically normal themselves and the F1 plants appear similar to typical maize × teosinte F1s. However, upon backcrossing to maize, the BC1 and subsequent generations display a number of detrimental characteristics including shorter stature, reduced seed set, and abnormal floral structures. This phenomenon is observed in all BC individuals and there is no chromosomal segment linked to the sickly plant phenotype in advanced backcross generations. Once the sickly phenotype appears in a lineage, normal plants are never again recovered by continued backcrossing to the normal maize parent. Whole-genome shotgun sequencing reveals a small number of genomic sequences, some with homology to transposable elements, that have increased in copy number in the backcross populations. Transcriptome analysis of seedlings, which do not have striking phenotypic abnormalities, identified segments of 18 maize genes that exhibit increased expression in sickly plants. A de novo assembly of transcripts present in plants exhibiting the sickly phenotype identified a set of 59 upregulated novel transcripts. These transcripts include some examples with sequence similarity to transposable elements and other sequences present in the recurrent maize parent (W22) genome as well as novel sequences not present in the W22 genome. Genome-wide profiles of gene expression, DNA methylation, and small RNAs are similar between sickly plants and normal controls, although a few upregulated transcripts and transposable elements are associated with altered small RNA or methylation profiles. This study documents hybrid incompatibility and genome instability triggered by the backcrossing of Bravo teosinte with maize. We name this phenomenon "hybrid decay" and present ideas on the mechanism that may underlie it.


Assuntos
Epigênese Genética , Vigor Híbrido , Hibridização Genética , Endogamia , Zea mays/genética , Elementos de DNA Transponíveis , Instabilidade Genômica , Polimorfismo Genético , Transcriptoma
7.
Proc Natl Acad Sci U S A ; 116(5): 1679-1685, 2019 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-30655344

RESUMO

Whole-chromosome painting probes were developed for each of the 10 chromosomes of maize by producing amplifiable libraries of unique sequences of oligonucleotides that can generate labeled probes through transcription reactions. These paints allow identification of individual homologous chromosomes for many applications as demonstrated in somatic root tip metaphase cells, in the pachytene stage of meiosis, and in interphase nuclei. Several chromosomal aberrations were examined as proof of concept for study of various rearrangements using probes that cover the entire chromosome and that label diverse varieties. The relationship of the supernumerary B chromosome and the normal chromosomes was examined with the finding that there is no detectable homology between any of the normal A chromosomes and the B chromosome. Combined with other chromosome-labeling techniques, a complete set of whole-chromosome oligonucleotide paints lays the foundation for future studies of the structure, organization, and evolution of genomes.


Assuntos
Núcleo Celular/genética , Cromossomos de Plantas/genética , Sondas de DNA/genética , Rearranjo Gênico/genética , Aberrações Cromossômicas , Coloração Cromossômica/métodos , Genoma de Planta/genética , Metáfase/genética , Oligonucleotídeos/genética , Transcrição Gênica/genética
8.
PLoS Genet ; 14(5): e1007162, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29746459

RESUMO

While the vast majority of genome size variation in plants is due to differences in repetitive sequence, we know little about how selection acts on repeat content in natural populations. Here we investigate parallel changes in intraspecific genome size and repeat content of domesticated maize (Zea mays) landraces and their wild relative teosinte across altitudinal gradients in Mesoamerica and South America. We combine genotyping, low coverage whole-genome sequence data, and flow cytometry to test for evidence of selection on genome size and individual repeat abundance. We find that population structure alone cannot explain the observed variation, implying that clinal patterns of genome size are maintained by natural selection. Our modeling additionally provides evidence of selection on individual heterochromatic knob repeats, likely due to their large individual contribution to genome size. To better understand the phenotypes driving selection on genome size, we conducted a growth chamber experiment using a population of highland teosinte exhibiting extensive variation in genome size. We find weak support for a positive correlation between genome size and cell size, but stronger support for a negative correlation between genome size and the rate of cell production. Reanalyzing published data of cell counts in maize shoot apical meristems, we then identify a negative correlation between cell production rate and flowering time. Together, our data suggest a model in which variation in genome size is driven by natural selection on flowering time across altitudinal clines, connecting intraspecific variation in repetitive sequence to important differences in adaptive phenotypes.


Assuntos
Evolução Molecular , Tamanho do Genoma , Genoma de Planta/genética , Zea mays/genética , Adaptação Fisiológica/genética , Altitude , América Central , Variação Genética , Geografia , Hibridização in Situ Fluorescente , Sequências Repetitivas de Ácido Nucleico/genética , Seleção Genética , América do Sul , Especificidade da Espécie , Zea mays/classificação
9.
Genetics ; 204(1): 35-42, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27440866

RESUMO

Two lines of Zea mays were developed as a short-generation model for maize. The Fast-Flowering Mini-Maize (FFMM) lines A and B are robust inbred lines with a significantly shorter generation time, much smaller stature, and better greenhouse adaptation than traditional maize varieties. Five generations a year are typical. FFMM is the result of a modified double-cross hybrid between four fast-flowering lines: Neuffer's Early ACR (full color), Alexander's Early Early Synthetic, Tom Thumb Popcorn, and Gaspe Flint, followed by selection for early flowering and desirable morphology throughout an 11-generation selfing regime. Lines A and B were derived from different progeny of the initial hybrid, and crosses between Mini-Maize A and B exhibit heterosis. The ancestry of each genomic region of Mini-Maize A and B was inferred from the four founder populations using genotyping by sequencing. Other genetic and genomic tools for these lines include karyotypes for both lines A and B, kernel genetic markers y1 (white endosperm) and R1-scm2 (purple endosperm and embryo) introgressed into Mini-Maize A, and ∼24× whole-genome resequencing data for Mini-Maize A.


Assuntos
Modelos Genéticos , Zea mays/crescimento & desenvolvimento , Zea mays/genética , Cruzamentos Genéticos , Flores/genética , Flores/crescimento & desenvolvimento , Marcadores Genéticos , Genótipo , Técnicas de Genotipagem/métodos , Vigor Híbrido , Cariótipo , Sementes/genética
10.
Front Plant Sci ; 7: 308, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27047500

RESUMO

The ancestral centromeres of maize contain long stretches of the tandemly arranged CentC repeat. The abundance of tandem DNA repeats and centromeric retrotransposons (CR) has presented a significant challenge to completely assembling centromeres using traditional sequencing methods. Here, we report a nearly complete assembly of the 1.85 Mb maize centromere 10 from inbred B73 using PacBio technology and BACs from the reference genome project. The error rates estimated from overlapping BAC sequences are 7 × 10(-6) and 5 × 10(-5) for mismatches and indels, respectively. The number of gaps in the region covered by the reassembly was reduced from 140 in the reference genome to three. Three expressed genes are located between 92 and 477 kb from the inferred ancestral CentC cluster, which lies within the region of highest centromeric repeat density. The improved assembly increased the count of full-length CR from 5 to 55 and revealed a 22.7 kb segmental duplication that occurred approximately 121,000 years ago. Our analysis provides evidence of frequent recombination events in the form of partial retrotransposons, deletions within retrotransposons, chimeric retrotransposons, segmental duplications including higher order CentC repeats, a deleted CentC monomer, centromere-proximal inversions, and insertion of mitochondrial sequences. Double-strand DNA break (DSB) repair is the most plausible mechanism for these events and may be the major driver of centromere repeat evolution and diversity. In many cases examined here, DSB repair appears to be mediated by microhomology, suggesting that tandem repeats may have evolved to efficiently repair frequent DSBs in centromeres.

11.
Methods Mol Biol ; 990: 35-43, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23559200

RESUMO

Fluorescence in situ hybridization (FISH) can be used to visualize chromosomal features using repetitive or single gene probes above a minimum target size. When applied to meiosis, each chromosome of the karyotypic complement can be identified, which can facilitate an understanding of the interrelationship of different chromosomes during this process. On the other hand, the pachytene stage of early meiosis is characterized by slightly but not strongly condensed chromosomes that permit more detailed analyses of adjacent features than can be achieved with somatic metaphase chromosomes.


Assuntos
Coloração Cromossômica/métodos , Cromossomos de Plantas , Meiose/genética , Zea mays/genética , Hibridização in Situ Fluorescente/métodos , Coloração e Rotulagem/métodos
12.
Proc Natl Acad Sci U S A ; 110(13): 5241-6, 2013 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-23479633

RESUMO

Genome structure variation, including copy number variation and presence/absence variation, comprises a large extent of maize genetic diversity; however, its effect on phenotypes remains largely unexplored. Here, we describe how copy number variation underlies a rare allele that contributes to maize aluminum (Al) tolerance. Al toxicity is the primary limitation for crop production on acid soils, which make up 50% of the world's potentially arable lands. In a recombinant inbred line mapping population, copy number variation of the Al tolerance gene multidrug and toxic compound extrusion 1 (MATE1) is the basis for the quantitative trait locus of largest effect on phenotypic variation. This expansion in MATE1 copy number is associated with higher MATE1 expression, which in turn results in superior Al tolerance. The three MATE1 copies are identical and are part of a tandem triplication. Only three maize inbred lines carrying the three-copy allele were identified from maize and teosinte diversity panels, indicating that copy number variation for MATE1 is a rare, and quite likely recent, event. These maize lines with higher MATE1 copy number are also Al-tolerant, have high MATE1 expression, and originate from regions of highly acidic soils. Our findings show a role for copy number variation in the adaptation of maize to acidic soils in the tropics and suggest that genome structural changes may be a rapid evolutionary response to new environments.


Assuntos
Alumínio/farmacologia , Proteínas de Transporte/biossíntese , Resistência a Medicamentos/fisiologia , Evolução Molecular , Dosagem de Genes , Proteínas de Plantas/biossíntese , Locos de Características Quantitativas , Zea mays/metabolismo , Proteínas de Transporte/genética , Resistência a Medicamentos/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/fisiologia , Proteínas de Plantas/genética , Zea mays/genética
13.
Genetics ; 194(1): 81-9, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23457233

RESUMO

Examples of meiotic drive, the non-Mendelian segregation of a specific genomic region, have been identified in several eukaryotic species. Maize contains the abnormal chromosome 10 (Ab10) drive system that transforms typically inert heterochromatic knobs into centromere-like domains (neocentromeres) that move rapidly poleward along the spindle during meiosis. Knobs can be made of two different tandem repeat sequences (TR-1 and 180-bp repeat), and both repeats have become widespread in Zea species. Here we describe detailed studies of a large knob on chromosome 10 called K10L2. We show that the knob is composed entirely of the TR-1 repeat and is linked to a strong activator of TR-1 neocentromere activity. K10L2 shows weak meiotic drive when paired with N10 but significantly reduces the meiotic drive exhibited by Ab10 (types I or II) in Ab10/K10L2 heterozygotes. These and other data confirm that (1) there are two separate and independent neocentromere activities in maize, (2) that both the TR-1 and knob 180 repeats exhibit meiotic drive (in the presence of other drive genes), and (3) that the two repeats can operate in competition with each other. Our results support the general concept that tandem repeat arrays can engage in arms-race-like struggles and proliferate as an outcome.


Assuntos
Genoma de Planta/genética , Sequências de Repetição em Tandem/genética , Zea mays/genética , Centrômero/genética , Cromossomos de Plantas/genética , Heterocromatina/metabolismo , Meiose/genética , Modelos Genéticos , Recombinação Genética/genética , Zea mays/citologia
14.
Methods Mol Biol ; 701: 67-96, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21181525

RESUMO

Fluorescence in situ hybridization (FISH) is an invaluable tool for chromosome analysis and engineering. The ability to visually localize endogenous genes, transposable elements, transgenes, naturally occurring organellar DNA insertions - essentially any unique sequence larger than 2 kb - greatly facilitates progress. This chapter details the labeling procedures and chromosome preparation techniques used to produce high-quality FISH signals on somatic metaphase and meiotic pachytene spreads.


Assuntos
Coloração Cromossômica/métodos , Cromossomos de Plantas , DNA de Plantas/genética , Hibridização in Situ Fluorescente/métodos , Plantas/genética , Biotecnologia/métodos , Metáfase
15.
PLoS Genet ; 5(11): e1000743, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19956743

RESUMO

We describe a comprehensive and general approach for mapping centromeres and present a detailed characterization of two maize centromeres. Centromeres are difficult to map and analyze because they consist primarily of repetitive DNA sequences, which in maize are the tandem satellite repeat CentC and interspersed centromeric retrotransposons of maize (CRM). Centromeres are defined epigenetically by the centromeric histone H3 variant, CENH3. Using novel markers derived from centromere repeats, we have mapped all ten centromeres onto the physical and genetic maps of maize. We were able to completely traverse centromeres 2 and 5, confirm physical maps by fluorescence in situ hybridization (FISH), and delineate their functional regions by chromatin immunoprecipitation (ChIP) with anti-CENH3 antibody followed by pyrosequencing. These two centromeres differ substantially in size, apparent CENH3 density, and arrangement of centromeric repeats; and they are larger than the rice centromeres characterized to date. Furthermore, centromere 5 consists of two distinct CENH3 domains that are separated by several megabases. Succession of centromere repeat classes is evidenced by the fact that elements belonging to the recently active recombinant subgroups of CRM1 colonize the present day centromeres, while elements of the ancestral subgroups are also found in the flanking regions. Using abundant CRM and non-CRM retrotransposons that inserted in and near these two centromeres to create a historical record of centromere location, we show that maize centromeres are fluid genomic regions whose borders are heavily influenced by the interplay of retrotransposons and epigenetic marks. Furthermore, we propose that CRMs may be involved in removal of centromeric DNA (specifically CentC), invasion of centromeres by non-CRM retrotransposons, and local repositioning of the CENH3.


Assuntos
Evolução Biológica , Centrômero/genética , Loci Gênicos , Retroelementos , Zea mays/genética , Sequência de Bases , Centrômero/ultraestrutura , Cromossomos de Plantas , DNA de Plantas
16.
Genetics ; 177(1): 661-6, 2007 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-17660545

RESUMO

SDF-9 is a modulator of Caenorhabditis elegans insulin/IGF-1 signaling that may interact directly with the DAF-2 receptor. SDF-9 is a tyrosine phosphatase-like protein that, when mutated, enhances many partial loss-of-function mutants in the dauer pathway except for the temperature-sensitive mutant daf-2(m41). We propose that SDF-9 stabilizes the active phosphorylated state of DAF-2 or acts as an adaptor protein to enhance insulin-like signaling.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/genética , Fator de Crescimento Insulin-Like I/metabolismo , Insulina/farmacologia , Proteínas Tirosina Fosfatases/metabolismo , Receptor de Insulina/metabolismo , Transdução de Sinais , Animais , Animais Geneticamente Modificados , Caenorhabditis elegans/crescimento & desenvolvimento , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Hipoglicemiantes/farmacologia , Mutação/genética , Feromônios/farmacologia , Fosforilação , Proteínas Tirosina Fosfatases/genética , Receptor de Insulina/genética
17.
Mol Cell ; 13(4): 469-82, 2004 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-14992718

RESUMO

To initiate a system-level analysis of C. elegans DAF-7/TGF-beta signaling, we combined interactome mapping with single and double genetic perturbations. Yeast two-hybrid (Y2H) screens starting with known DAF-7/TGF-beta pathway components defined a network of 71 interactions among 59 proteins. Coaffinity purification (co-AP) assays in mammalian cells confirmed the overall quality of this network. Systematic perturbations of the network using RNAi, both in wild-type and daf-7/TGF-beta pathway mutant animals, identified nine DAF-7/TGF-beta signaling modifiers, seven of which are conserved in humans. We show that one of these has functional homology to human SNO/SKI oncoproteins and that mutations at the corresponding genetic locus daf-5 confer defects in DAF-7/TGF-beta signaling. Our results reveal substantial molecular complexity in DAF-7/TGF-beta signal transduction. Integrating interactome maps with systematic genetic perturbations may be useful for developing a systems biology approach to this and other signaling modules.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Proteoma/metabolismo , Transdução de Sinais , Fator de Crescimento Transformador beta/metabolismo , Animais , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Linhagem Celular , Mapeamento Cromossômico , Cosmídeos , Regulação da Expressão Gênica no Desenvolvimento , Genes de Helmintos , Genômica , Humanos , Rim , Modelos Biológicos , Mutação , Fases de Leitura Aberta , RNA Interferente Pequeno/metabolismo , Transfecção , Fator de Crescimento Transformador beta/genética , Transgenes , Técnicas do Sistema de Duplo-Híbrido
18.
Development ; 129(1): 221-31, 2002 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-11782415

RESUMO

The daf-9 gene functions to integrate transforming growth factor-beta and insulin-like signaling pathways to regulate Caenorhabditis elegans larval development. Mutations in daf-9 result in transient dauer-like larval arrest, abnormal reproductive development, molting defects and increased adult longevity. The phenotype is sterol-dependent, and dependent on the activity of DAF-12, a nuclear hormone receptor. Genetic tests show that daf-9 is upstream of daf-12 in the genetic pathways for larval development and adult longevity. daf-9 encodes a cytochrome P450 related to those involved in biosynthesis of steroid hormones in mammals. We propose that it specifies a step in the biosynthetic pathway for a DAF-12 ligand, which might be a steroid. The surprising cellular specificity of daf-9 expression (predominantly in two sensory neurons) supports a previously unrecognized role for these cells in neuroendocrine control of larval development, reproduction and life span.


Assuntos
Caenorhabditis elegans/genética , Sistema Enzimático do Citocromo P-450/genética , Longevidade/genética , Sequência de Aminoácidos , Animais , Caenorhabditis elegans/embriologia , Embrião não Mamífero/fisiologia , Regulação da Expressão Gênica no Desenvolvimento , Dados de Sequência Molecular , Mutação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...