Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 13(1): 608, 2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-35105890

RESUMO

In obesity, signaling through the IRE1 arm of the unfolded protein response exerts both protective and harmful effects. Overexpression of the IRE1-regulated transcription factor XBP1s in liver or fat protects against obesity-linked metabolic deterioration. However, hyperactivation of IRE1 engages regulated IRE1-dependent decay (RIDD) and TRAF2/JNK pro-inflammatory signaling, which accelerate metabolic dysfunction. These pathologic IRE1-regulated processes have hindered efforts to pharmacologically harness the protective benefits of IRE1/XBP1s signaling in obesity-linked conditions. Here, we report the effects of a XBP1s-selective pharmacological IRE1 activator, IXA4, in diet-induced obese (DIO) mice. IXA4 transiently activates protective IRE1/XBP1s signaling in liver without inducing RIDD or TRAF2/JNK signaling. IXA4 treatment improves systemic glucose metabolism and liver insulin action through IRE1-dependent remodeling of the hepatic transcriptome that reduces glucose production and steatosis. IXA4-stimulated IRE1 activation also enhances pancreatic function. Our findings indicate that systemic, transient activation of IRE1/XBP1s signaling engenders multi-tissue benefits that integrate to mitigate obesity-driven metabolic dysfunction.


Assuntos
Proteínas de Membrana/metabolismo , Proteínas de Membrana/farmacologia , Obesidade/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/farmacologia , Proteína 1 de Ligação a X-Box/metabolismo , Animais , Fígado Gorduroso/metabolismo , Regulação da Expressão Gênica , Glucose/metabolismo , Homeostase , Fígado/metabolismo , Proteínas de Membrana/genética , Camundongos , Camundongos Obesos , Medicina Molecular , Obesidade/genética , Proteínas Serina-Treonina Quinases/genética , Transdução de Sinais , Fatores de Transcrição/metabolismo , Resposta a Proteínas não Dobradas , Proteína 1 de Ligação a X-Box/genética
2.
Nature ; 576(7785): 138-142, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31748741

RESUMO

Haem is an essential prosthetic group of numerous proteins and a central signalling molecule in many physiologic processes1,2. The chemical reactivity of haem means that a network of intracellular chaperone proteins is required to avert the cytotoxic effects of free haem, but the constituents of such trafficking pathways are unknown3,4. Haem synthesis is completed in mitochondria, with ferrochelatase adding iron to protoporphyrin IX. How this vital but highly reactive metabolite is delivered from mitochondria to haemoproteins throughout the cell remains poorly defined3,4. Here we show that progesterone receptor membrane component 2 (PGRMC2) is required for delivery of labile, or signalling haem, to the nucleus. Deletion of PGMRC2 in brown fat, which has a high demand for haem, reduced labile haem in the nucleus and increased stability of the haem-responsive transcriptional repressors Rev-Erbα and BACH1. Ensuing alterations in gene expression caused severe mitochondrial defects that rendered adipose-specific PGRMC2-null mice unable to activate adaptive thermogenesis and prone to greater metabolic deterioration when fed a high-fat diet. By contrast, obese-diabetic mice treated with a small-molecule PGRMC2 activator showed substantial improvement of diabetic features. These studies uncover a role for PGRMC2 in intracellular haem transport, reveal the influence of adipose tissue haem dynamics on physiology and suggest that modulation of PGRMC2 may revert obesity-linked defects in adipocytes.


Assuntos
Adipócitos/metabolismo , Heme/metabolismo , Proteínas de Membrana/metabolismo , Receptores de Progesterona/metabolismo , Animais , Homeostase , Humanos , Espaço Intracelular/metabolismo , Masculino , Proteínas de Membrana/deficiência , Proteínas de Membrana/genética , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mitocôndrias/metabolismo , Chaperonas Moleculares/metabolismo , Receptores de Progesterona/deficiência , Receptores de Progesterona/genética , Transcrição Gênica
3.
Cell Rep ; 25(10): 2904-2918.e8, 2018 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-30517875

RESUMO

Pancreatic ß cell physiology changes substantially throughout life, yet the mechanisms that drive these changes are poorly understood. Here, we performed comprehensive in vivo quantitative proteomic profiling of pancreatic islets from juvenile and 1-year-old mice. The analysis revealed striking differences in abundance of enzymes controlling glucose metabolism. We show that these changes in protein abundance are associated with higher activities of glucose metabolic enzymes involved in coupling factor generation as well as increased activity of the coupling factor-dependent amplifying pathway of insulin secretion. Nutrient tracing and targeted metabolomics demonstrated accelerated accumulation of glucose-derived metabolites and coupling factors in islets from 1-year-old mice, indicating that age-related changes in glucose metabolism contribute to improved glucose-stimulated insulin secretion with age. Together, our study provides an in-depth characterization of age-related changes in the islet proteome and establishes metabolic rewiring as an important mechanism for age-associated changes in ß cell function.


Assuntos
Senescência Celular , Células Secretoras de Insulina/metabolismo , Metabolômica/métodos , Proteômica/métodos , Envelhecimento , Animais , Carbono/metabolismo , Respiração Celular/efeitos dos fármacos , Ciclo do Ácido Cítrico/efeitos dos fármacos , Feminino , Regulação da Expressão Gênica , Glucose/metabolismo , Glucose/farmacologia , Secreção de Insulina , Masculino , Camundongos Endogâmicos C57BL , Proteoma/metabolismo
4.
Mol Metab ; 16: 76-87, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30120064

RESUMO

OBJECTIVES: Extracts of the hops plant have been shown to reduce weight and insulin resistance in rodents and humans, but elucidation of the mechanisms responsible for these benefits has been hindered by the use of heterogeneous hops-derived mixtures. Because hop extracts are used as flavoring agents for their bitter properties, we hypothesized that bitter taste receptors (Tas2rs) could be mediating their beneficial effects in metabolic disease. Studies have shown that exposure of cultured enteroendocrine cells to bitter tastants can stimulate release of hormones, including glucagon-like peptide 1 (GLP-1). These findings have led to the suggestion that activation of Tas2rs may be of benefit in diabetes, but this tenet has not been tested. Here, we have assessed the ability of a pure derivative of a hops isohumulone with anti-diabetic properties, KDT501, to signal through Tas2rs. We have further used this compound as a tool to systematically assess the impact of bitter taste receptor activation in obesity-diabetes. METHODS: KDT501 was tested in a panel of bitter taste receptor signaling assays. Diet-induced obese mice (DIO) were dosed orally with KDT501 and acute effects on glucose homeostasis determined. A wide range of metabolic parameters were evaluated in DIO mice chronically treated with KDT501 to establish the full impact of activating gut bitter taste signaling. RESULTS: We show that KDT501 signals through Tas2r108, one of 35 mouse Tas2rs. In DIO mice, acute treatment stimulated GLP-1 secretion and enhanced glucose tolerance. Chronic treatment caused weight and fat mass loss, increased energy expenditure, enhanced glucose tolerance and insulin sensitivity, normalized plasma lipids, and induced broad suppression of inflammatory markers. Chronic KDT501 treatment altered enteroendocrine hormone levels and bile acid homeostasis and stimulated sustained GLP-1 release. Combined treatment with a dipeptidyl peptidase IV inhibitor amplified the incretin-based benefits of this pure isohumulone. CONCLUSIONS: Activation of Tas2r108 in the gut results in a remodeling of enteroendocrine hormone release and bile acid metabolism that ameliorates multiple features of metabolic syndrome. Targeting extraoral bitter taste receptors may be useful in metabolic disease.


Assuntos
Ciclopentanos/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Receptores Acoplados a Proteínas G/fisiologia , Animais , Peso Corporal/efeitos dos fármacos , Ciclopentanos/farmacologia , Diabetes Mellitus Tipo 2/metabolismo , Modelos Animais de Doenças , Células Enteroendócrinas/metabolismo , Peptídeo 1 Semelhante ao Glucagon/efeitos dos fármacos , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Humulus/metabolismo , Hipoglicemiantes/farmacologia , Resistência à Insulina/fisiologia , Mucosa Intestinal/metabolismo , Intestinos/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Obesos , Receptores Acoplados a Proteínas G/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos
5.
iScience ; 2: 221-237, 2018 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-29888756

RESUMO

Adrenergic stimulation of brown adipose tissue (BAT) induces acute and long-term responses. The acute adrenergic response activates thermogenesis by uncoupling oxidative phosphorylation and enabling increased substrate oxidation. Long-term, adrenergic signaling remodels BAT, inducing adaptive transcriptional changes that expand thermogenic capacity. Here, we show that the estrogen-related receptors alpha and gamma (ERRα, ERRγ) are collectively critical effectors of adrenergically stimulated transcriptional reprogramming of BAT. Mice lacking adipose ERRs (ERRαγAd-/-) have reduced oxidative and thermogenic capacity and rapidly become hypothermic when exposed to cold. ERRαγAd-/- mice treated long term with a ß3-adrenergic agonist fail to expand oxidative or thermogenic capacity and do not increase energy expenditure in response to norepinephrine (NE). Furthermore, ERRαγAd-/- mice fed a high-fat diet do not lose weight or show improved glucose tolerance when dosed with ß3-adrenergic agonists. The molecular basis of these defects is the finding that ERRs mediate the bulk of the transcriptional response to adrenergic stimulation.

6.
J Clin Invest ; 128(4): 1538-1550, 2018 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-29528335

RESUMO

Obesity is a major risk factor for insulin resistance and type 2 diabetes. In adipose tissue, obesity-mediated insulin resistance correlates with the accumulation of proinflammatory macrophages and inflammation. However, the causal relationship of these events is unclear. Here, we report that obesity-induced insulin resistance in mice precedes macrophage accumulation and inflammation in adipose tissue. Using a mouse model that combines genetically induced, adipose-specific insulin resistance (mTORC2-knockout) and diet-induced obesity, we found that insulin resistance causes local accumulation of proinflammatory macrophages. Mechanistically, insulin resistance in adipocytes results in production of the chemokine monocyte chemoattractant protein 1 (MCP1), which recruits monocytes and activates proinflammatory macrophages. Finally, insulin resistance (high homeostatic model assessment of insulin resistance [HOMA-IR]) correlated with reduced insulin/mTORC2 signaling and elevated MCP1 production in visceral adipose tissue from obese human subjects. Our findings suggest that insulin resistance in adipose tissue leads to inflammation rather than vice versa.


Assuntos
Resistência à Insulina , Gordura Intra-Abdominal/metabolismo , Macrófagos/metabolismo , Obesidade/metabolismo , Paniculite/metabolismo , Transdução de Sinais , Células 3T3-L1 , Animais , Quimiocina CCL2/genética , Quimiocina CCL2/metabolismo , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/patologia , Humanos , Inflamação/genética , Inflamação/metabolismo , Inflamação/patologia , Gordura Intra-Abdominal/patologia , Macrófagos/patologia , Alvo Mecanístico do Complexo 2 de Rapamicina/genética , Alvo Mecanístico do Complexo 2 de Rapamicina/metabolismo , Camundongos , Camundongos Knockout , Obesidade/genética , Obesidade/patologia , Paniculite/genética , Paniculite/patologia
7.
FASEB J ; 30(5): 1976-86, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-26849960

RESUMO

Ketone bodies (KBs) are crucial energy substrates during states of low carbohydrate availability. However, an aberrant regulation of KB homeostasis can lead to complications such as diabetic ketoacidosis. Exercise and diabetes affect systemic KB homeostasis, but the regulation of KB metabolism is still enigmatic. In our study in mice with either knockout or overexpression of the peroxisome proliferator-activated receptor-γ coactivator (PGC)-1α in skeletal muscle, PGC-1α regulated ketolytic gene transcription in muscle. Furthermore, KB homeostasis of these mice was investigated during withholding of food, exercise, and ketogenic diet feeding, and after streptozotocin injection. In response to these ketogenic stimuli, modulation of PGC-1α levels in muscle affected systemic KB homeostasis. Moreover, the data demonstrate that skeletal muscle PGC-1α is necessary for the enhanced ketolytic capacity in response to exercise training and overexpression of PGC-1α in muscle enhances systemic ketolytic capacity and is sufficient to ameliorate diabetic hyperketonemia in mice. In cultured myotubes, the transcription factor estrogen-related receptor-α was a partner of PGC-1α in the regulation of ketolytic gene transcription. These results demonstrate a central role of skeletal muscle PGC-1α in the transcriptional regulation of systemic ketolytic capacity.-Svensson, K., Albert, V., Cardel, B., Salatino, S., Handschin, C. Skeletal muscle PGC-1α modulates systemic ketone body homeostasis and ameliorates diabetic hyperketonemia in mice.


Assuntos
Dieta Cetogênica , Privação de Alimentos , Homeostase/fisiologia , Corpos Cetônicos/sangue , Atividade Motora , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Animais , Animais Geneticamente Modificados , Linhagem Celular , Corpos Cetônicos/metabolismo , Masculino , Camundongos , Camundongos Knockout , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/genética , Receptores de Estrogênio/genética , Receptores de Estrogênio/metabolismo , Receptor ERRalfa Relacionado ao Estrogênio
8.
EMBO Mol Med ; 8(3): 232-46, 2016 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-26772600

RESUMO

Activation of non-shivering thermogenesis (NST) in brown adipose tissue (BAT) has been proposed as an anti-obesity treatment. Moreover, cold-induced glucose uptake could normalize blood glucose levels in insulin-resistant patients. It is therefore important to identify novel regulators of NST and cold-induced glucose uptake. Mammalian target of rapamycin complex 2 (mTORC2) mediates insulin-stimulated glucose uptake in metabolic tissues, but its role in NST is unknown. We show that mTORC2 is activated in brown adipocytes upon ß-adrenergic stimulation. Furthermore, mice lacking mTORC2 specifically in adipose tissue (AdRiKO mice) are hypothermic, display increased sensitivity to cold, and show impaired cold-induced glucose uptake and glycolysis. Restoration of glucose uptake in BAT by overexpression of hexokinase II or activated Akt2 was sufficient to increase body temperature and improve cold tolerance in AdRiKO mice. Thus, mTORC2 in BAT mediates temperature homeostasis via regulation of cold-induced glucose uptake. Our findings demonstrate the importance of glucose metabolism in temperature regulation.


Assuntos
Tecido Adiposo Marrom/metabolismo , Glucose/metabolismo , Glicólise , Complexos Multiproteicos/metabolismo , Proteína Oncogênica v-akt/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Termogênese , Animais , Alvo Mecanístico do Complexo 2 de Rapamicina , Camundongos
9.
Biochem Biophys Res Commun ; 464(2): 480-6, 2015 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-26159924

RESUMO

Orexigenic agouti-related protein/neuropeptide Y (Agrp/NPY) neurons and an orexigenic pro-opiomelanocortin (POMC) neurons of the hypothalamus regulate feeding behavior and energy homeostasis. An understanding of the molecular signaling pathways that regulate Agrp/NPY and POMC function could lead to novel treatments for metabolic disorders. Target of Rapamycin Complex 1 (TORC1) is a nutrient-activated protein kinase and central controller of growth and metabolism. We therefore investigated the role of mammalian TORC1 (mTORC1) in Agrp neurons. We generated and characterized Agrp neuron-specific raptor knockout (Agrp-raptor KO) mice. Agrp-raptor KO mice displayed reduced, non-circadian expression of Agrp and NPY but normal feeding behavior and energy homeostasis on both normal and high fat diet. Thus, mTORC1 in Agrp neurons controls circadian expression of orexigenic neuropeptides but is dispensable for the regulation of feeding behavior and energy metabolism.


Assuntos
Proteína Relacionada com Agouti/metabolismo , Ritmo Circadiano , Comportamento Alimentar , Complexos Multiproteicos/metabolismo , Neurônios/metabolismo , Neuropeptídeo Y/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteína Relacionada com Agouti/genética , Animais , Alvo Mecanístico do Complexo 1 de Rapamicina , Camundongos , Camundongos Knockout , Estresse Oxidativo , Proteína Regulatória Associada a mTOR , Transdução de Sinais
11.
J Biol Chem ; 290(26): 16059-76, 2015 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-25987562

RESUMO

Resveratrol (RSV) and SRT1720 (SRT) elicit beneficial metabolic effects and are postulated to ameliorate obesity and related metabolic complications. The co-activator, peroxisome proliferator-activated receptor γ co-activator 1α (PGC-1α), has emerged as a major downstream effector responsible for metabolic remodeling of muscle and other metabolic tissues in response to RSV or SRT treatment. However, the requirement of PGC-1α in skeletal muscle for the systemic metabolic effects of these compounds has so far not been demonstrated. Using muscle-specific PGC-1α knock-out mice, we show that PGC-1α is necessary for transcriptional induction of mitochondrial genes in muscle with both RSV and SRT treatment. Surprisingly, the beneficial effects of SRT on glucose homeostasis and of both compounds on energy expenditure occur even in the absence of muscle PGC-1α. Moreover, RSV and SRT treatment elicit differential transcriptional effects on genes involved in lipid metabolism and mitochondrial biogenesis in liver and adipose tissue. These findings indicate that RSV and SRT do not induce analogous metabolic effects in vivo. Our results provide important insights into the mechanism, effects, and organ specificity of the caloric restriction mimetics RSV and SRT. These findings are important for the design of future therapeutic interventions aimed at ameliorating obesity and obesity-related metabolic dysfunction.


Assuntos
Tecido Adiposo/metabolismo , Compostos Heterocíclicos de 4 ou mais Anéis/farmacologia , Fígado/metabolismo , Músculo Esquelético/metabolismo , Estilbenos/farmacologia , Fatores de Transcrição/metabolismo , Tecido Adiposo/efeitos dos fármacos , Animais , Metabolismo Energético/efeitos dos fármacos , Feminino , Glucose/metabolismo , Metabolismo dos Lipídeos/efeitos dos fármacos , Fígado/efeitos dos fármacos , Masculino , Camundongos , Camundongos Knockout , Músculo Esquelético/efeitos dos fármacos , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo , Resveratrol , Fatores de Transcrição/genética
12.
Curr Opin Cell Biol ; 33: 55-66, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25554914

RESUMO

Mammalian TOR (mTOR) signaling controls growth, metabolism and energy homeostasis in a cell autonomous manner. Recent findings indicate that mTOR signaling in one tissue can also affect other organs thereby affecting whole body metabolism and energy homeostasis in a non-cell autonomous manner. It is thus not surprising that mTOR signaling mediates aging and is often deregulated in metabolic disorders, such as obesity, diabetes and cancer. This review discusses the regulation of cellular and whole body energy metabolism by mTOR, with particular focus on the non-cell autonomous function of mTOR.


Assuntos
Metabolismo Energético , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismo , Tecido Adiposo/enzimologia , Tecido Adiposo/metabolismo , Animais , Homeostase , Humanos , Hipotálamo/enzimologia , Hipotálamo/metabolismo , Fígado/enzimologia , Fígado/metabolismo , Doenças Metabólicas/enzimologia , Doenças Metabólicas/metabolismo , Mitocôndrias/enzimologia , Mitocôndrias/metabolismo , Músculo Esquelético/enzimologia , Músculo Esquelético/metabolismo , Nucleotídeos/biossíntese , Biossíntese de Proteínas
13.
Proc Natl Acad Sci U S A ; 111(32): 11592-9, 2014 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-25082895

RESUMO

The liver is a key metabolic organ that controls whole-body physiology in response to nutrient availability. Mammalian target of rapamycin (mTOR) is a nutrient-activated kinase and central controller of growth and metabolism that is negatively regulated by the tumor suppressor tuberous sclerosis complex 1 (TSC1). To investigate the role of hepatic mTOR complex 1 (mTORC1) in whole-body physiology, we generated liver-specific Tsc1 (L-Tsc1 KO) knockout mice. L-Tsc1 KO mice displayed reduced locomotor activity, body temperature, and hepatic triglyceride content in a rapamycin-sensitive manner. Ectopic activation of mTORC1 also caused depletion of hepatic and plasma glutamine, leading to peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α)-dependent fibroblast growth factor 21 (FGF21) expression in the liver. Injection of glutamine or knockdown of PGC-1α or FGF21 in the liver suppressed the behavioral and metabolic defects due to mTORC1 activation. Thus, mTORC1 in the liver controls whole-body physiology through PGC-1α and FGF21. Finally, mTORC1 signaling correlated with FGF21 expression in human liver tumors, suggesting that treatment of glutamine-addicted cancers with mTOR inhibitors might have beneficial effects at both the tumor and whole-body level.


Assuntos
Temperatura Corporal/fisiologia , Fatores de Crescimento de Fibroblastos/metabolismo , Metabolismo dos Lipídeos , Fígado/metabolismo , Atividade Motora/fisiologia , Complexos Multiproteicos/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Animais , Carcinoma Hepatocelular/metabolismo , Fatores de Crescimento de Fibroblastos/antagonistas & inibidores , Fatores de Crescimento de Fibroblastos/genética , Técnicas de Silenciamento de Genes , Glutamina/metabolismo , Humanos , Neoplasias Hepáticas/metabolismo , Masculino , Alvo Mecanístico do Complexo 1 de Rapamicina , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Transdução de Sinais , Fatores de Transcrição/antagonistas & inibidores , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteína 1 do Complexo Esclerose Tuberosa , Proteínas Supressoras de Tumor/deficiência , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo
14.
Arterioscler Thromb Vasc Biol ; 33(9): 2105-11, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23868942

RESUMO

OBJECTIVE: Perivascular adipose tissue (PVAT) wraps blood vessels and modulates vasoreactivity by secretion of vasoactive molecules. Mammalian target of rapamycin complex 2 (mTORC2) has been shown to control inflammation and is expressed in adipose tissue. In this study, we investigated whether adipose-specific deletion of rictor and thereby inactivation of mTORC2 in PVAT may modulate vascular function by increasing inflammation in PVAT. APPROACH AND RESULTS: Rictor, an essential mTORC2 component, was deleted specifically in mouse adipose tissue (rictor(ad-/-)). Phosphorylation of mTORC2 downstream target Akt at Serine 473 was reduced in PVAT from rictor(ad-/-) mice but unaffected in aortic tissue. Ex vivo functional analysis of thoracic aortae revealed increased contractions and impaired dilation in rings with PVAT from rictor(ad-/-) mice. Adipose rictor knockout increased gene expression and protein release of interleukin-6, macrophage inflammatory protein-1α, and tumor necrosis factor-α in PVAT as shown by quantitative real-time polymerase chain reaction and Bioplex analysis for the cytokines in the conditioned media, respectively. Moreover, gene and protein expression of inducible nitric oxide synthase was upregulated without affecting macrophage infiltration in PVAT from rictor(ad-/-) mice. Inhibition of inducible nitric oxide synthase normalized vascular reactivity in aortic rings from rictor(ad-/-) mice with no effect in rictor(fl/fl) mice. Interestingly, in perivascular and epididymal adipose depots, high-fat diet feeding induced downregulation of rictor gene expression. CONCLUSIONS: Here, we identify mTORC2 as a critical regulator of PVAT-directed protection of normal vascular tone. Modulation of mTORC2 activity in adipose tissue may be a potential therapeutic approach for inflammation-related vascular damage.


Assuntos
Tecido Adiposo/metabolismo , Aorta Torácica/metabolismo , Proteínas de Transporte/metabolismo , Citocinas/metabolismo , Mediadores da Inflamação/metabolismo , Inflamação/metabolismo , Vasoconstrição , Vasodilatação , Células 3T3-L1 , Tecido Adiposo/imunologia , Animais , Aorta Torácica/efeitos dos fármacos , Aorta Torácica/imunologia , Proteínas de Transporte/genética , Quimiocina CCL3/metabolismo , Meios de Cultivo Condicionados/metabolismo , Citocinas/genética , Dieta Hiperlipídica , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/farmacologia , Inflamação/imunologia , Inflamação/fisiopatologia , Interleucina-6/metabolismo , Masculino , Alvo Mecanístico do Complexo 2 de Rapamicina , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Complexos Multiproteicos/metabolismo , Óxido Nítrico Sintase Tipo II/antagonistas & inibidores , Óxido Nítrico Sintase Tipo II/metabolismo , Fosforilação , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteína Companheira de mTOR Insensível à Rapamicina , Reação em Cadeia da Polimerase em Tempo Real , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Regulação para Cima , Vasoconstrição/efeitos dos fármacos , Vasoconstritores/farmacologia , Vasodilatação/efeitos dos fármacos , Vasodilatadores/farmacologia
15.
Curr Opin Genet Dev ; 23(1): 53-62, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23317514

RESUMO

The target of rapamycin (TOR) is a highly conserved serine/threonine kinase that is part of two structurally and functionally distinct complexes, TORC1 and TORC2. In multicellular organisms, TOR regulates cell growth and metabolism in response to nutrients, growth factors and cellular energy. Deregulation of TOR signaling alters whole body metabolism and causes age-related disease. This review describes the most recent advances in TOR signaling with a particular focus on mammalian TOR (mTOR) in metabolic tissues vis-a-vis aging, obesity, type 2 diabetes, and cancer.


Assuntos
Envelhecimento/genética , Neoplasias/genética , Serina-Treonina Quinases TOR/genética , Envelhecimento/metabolismo , Animais , Proliferação de Células , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Deleção de Genes , Regulação da Expressão Gênica , Humanos , Alvo Mecanístico do Complexo 1 de Rapamicina , Alvo Mecanístico do Complexo 2 de Rapamicina , Complexos Multiproteicos/genética , Complexos Multiproteicos/metabolismo , Neoplasias/metabolismo , Obesidade/genética , Obesidade/metabolismo , Transdução de Sinais , Sirolimo/farmacologia , Serina-Treonina Quinases TOR/metabolismo
16.
Proc Natl Acad Sci U S A ; 108(51): 20808-13, 2011 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-22143799

RESUMO

Mammalian target of rapamycin complex 1 (mTORC1) is central to the control of cell, organ, and body size. Skeletal muscle-specific inactivation of mTORC1 in mice results in smaller muscle fibers, fewer mitochondria, increased glycogen stores, and a progressive myopathy that causes premature death. In mTORC1-deficient muscles, peroxisome proliferator-activated receptor gamma coactivator 1-α (PGC-1α), which regulates mitochondrial biogenesis and glucose homeostasis, is strongly down-regulated. Here we tested whether induction of mitochondrial biogenesis pharmacologically or by the overexpression of PGC-1α is sufficient to reverse the phenotype of mice deficient for mTORC1. We show that both approaches normalize mitochondrial function, such as oxidative capacity and expression of mitochondrial genes. However, they do not prevent or delay the progressive myopathy. In addition, we find that mTORC1 has a much stronger effect than PGC-1α on the glycogen content in muscle. This effect is based on the strong activation of PKB/Akt in mTORC1-deficient mice. We also show that activation of PKB/Akt not only affects glycogen synthesis but also diminishes glycogen degradation. Thus, our work provides strong functional evidence that mitochondrial dysfunction in mice with inactivated mTORC1 signaling is caused by the down-regulation of PGC-1α. However, our data also show that the impairment of mitochondria does not lead directly to the lethal myopathy.


Assuntos
Bezafibrato/farmacologia , Regulação da Expressão Gênica , Doenças Musculares/metabolismo , Proteínas/metabolismo , Animais , Glicogênio/química , Glicogênio/metabolismo , Masculino , Alvo Mecanístico do Complexo 1 de Rapamicina , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Mitocôndrias/metabolismo , Mitocôndrias Musculares/metabolismo , Modelos Genéticos , Complexos Multiproteicos , Músculo Esquelético/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo , Serina-Treonina Quinases TOR , Transativadores/metabolismo , Fatores de Transcrição
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...