Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Brain Sci ; 13(12)2023 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-38137083

RESUMO

Both motor imagery and resistance-training enhance motor function and corticospinal excitability. We tested the hypothesis that young participants with significant resistance-training experience would show heightened corticospinal excitability during a single session of motor imagery training. Fifty-six participants (mean ± SD age = 22 ± 2 years) were divided into resistance-trained and untrained groups. Forty-one upper-body resistance trained (21 males, 20 females; mean ± SD relative one repetition maximum bench press = 0.922 ± 0.317 kg/kg) and 15 untrained (4 males, 11 females; mean ± SD relative one repetition maximum bench press = 0.566 ± 0.175 kg/kg) participants visited the laboratory on three separate occasions. The first visit served as the familiarization session. During visits 2 and 3, participants engaged in a hand/wrist motor imagery protocol or rested quietly (control condition) in a randomized order. Before and after the interventions, single-pulse transcranial magnetic stimulation (TMS) over the motor cortex was used to measure resting motor-evoked potential amplitude of the first dorsal interosseous muscle. Our main finding was that motor imagery acutely increased corticospinal excitability by ~64% (marginal means pre = 784.1 µV, post = 1246.6 µV; p < 0.001, d = 0.487). However, there was no evidence that the increase in corticospinal excitability was influenced by resistance-training experience. We suspect that our results may have been influenced by the specific nature of the motor imagery task. Our findings have important implications for motor imagery prescription and suggest that motor imagery training may be equally beneficial for both resistance-trained and untrained populations. This study was prospectively registered at ClinicalTrials.gov (Identifier: NCT03889548).

2.
Appl Physiol Nutr Metab ; 47(8): 839-846, 2022 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-35436421

RESUMO

Echo intensity may associate with indicators of skeletal muscle quality, but investigators often use different methodological approaches that may alter echo intensity when acquiring B-mode ultrasound images. We examined the influence of image depth and gain settings on the interpretation of echo intensity. Thirty-six college-aged males and females participated. Ultrasound images of the vastus lateralis were captured in the sagittal plane. Images were captured at depths of 3.0, 3.5, 4.0, 4.5, 5.0, 6.0, and 7.0 cm and gain settings of 50 and 60 dB in random order. For both gain settings, echo intensity values were similar between 4.0 and 6.0 cm. At a gain of 50 dB, 7.0 cm demonstrated greater values than all other depths. At a gain of 60 dB, 7.0 cm displayed greater values compared to all other depths, but 3.0 cm displayed lower echo intensity values than other depths. Echo intensity was substantially higher when using a gain of 60 dB compared to 50 dB (mean difference ≥ 21.7 arbitrary units, d ≥ 3.47). When planning investigations in new research areas, researchers should carefully consider their study-specific image depth. Echo intensity values are stable between depths of 4.0 and 6.0 cm, suggesting that changing image depth may not be problematic. Image gain must be kept constant. Novelty: Optimal approaches for B-mode ultrasound image acquisition of skeletal muscles remain unclear. Echo intensity is similar between depths of 4.0 and 6.0 cm, regardless of image gain. Investigators should seek to utilize a constant depth setting, but small deviations may be acceptable.


Assuntos
Músculo Esquelético , Músculo Quadríceps , Feminino , Humanos , Masculino , Músculo Esquelético/diagnóstico por imagem , Músculo Quadríceps/diagnóstico por imagem , Ultrassonografia/métodos , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA