Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Inorg Chem ; 63(21): 9735-9752, 2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38728376

RESUMO

A series of Ru(II) complexes incorporating two 4,4'-bis(trifluoromethyl)-2,2'-bipyridine (4,4'-btfmb) coligands and thienyl-appended imidazo[4,5-f][1,10]phenanthroline (IP-nT) ligands was characterized and assessed for phototherapy effects toward cancer cells. The [Ru(4,4'-btfmb)2(IP-nT)]2+ scaffold has greater overall redox activity compared to Ru(II) polypyridyl complexes such as [Ru(bpy)3]2+. Ru-1T-Ru-4T have additional oxidations due to the nT group and additional reductions due to the 4,4'-btfmb ligands. Ru-2T-Ru-4T also exhibit nT-based reductions. Ru-4T exhibits two oxidations and eight reductions within the potential window of -3 to +1.5 V. The lowest-lying triplets (T1) for Ru-0T-2T are metal-to-ligand charge-transfer (3MLCT) excited states with lifetimes around 1 µs, whereas T1 for Ru-3T-4T is longer-lived (∼20-24 µs) and of significant intraligand charge-transfer (3ILCT) character. Phototoxicity toward melanoma cells (SK-MEL-28) increases with n, with Ru-4T having a visible EC50 value as low as 9 nM and PI as large as 12,000. Ru-3T and Ru-4T retain some of this activity in hypoxia, where Ru-4T has a visible EC50 as low as 35 nM and PI as high as 2900. Activity over six biological replicates is consistent and within an order of magnitude. These results demonstrate the importance of lowest-lying 3ILCT states for phototoxicity and maintaining activity in hypoxia.

2.
Inorg Chem ; 62(51): 21181-21200, 2023 Dec 25.
Artigo em Inglês | MEDLINE | ID: mdl-38079387

RESUMO

Ru(II) polypyridyl complexes have gained widespread attention as photosensitizers for photodynamic therapy (PDT). Herein, we systematically investigate a series of the type [Ru(phen)2(IP-nT)]2+, featuring 1,10-phenanthroline (phen) coligands and imidazo[4,5-f][1,10]phenanthroline ligands tethered to n = 0-4 thiophene rings (IP-nT). The complexes were characterized and investigated for their electrochemical, spectroscopic, and (photo)biological properties. The electrochemical oxidation of the nT unit shifted by -350 mV as n = 1 → 4 (+920 mV for Ru-1T, +570 mV for Ru-4T); nT reductions were observed in complexes Ru-3T (-2530 mV) and Ru-4T (-2300 mV). Singlet oxygen quantum yields ranged from 0.53 to 0.88, with Ru-3T and Ru-4T being equally efficient (∼0.88). Time-resolved absorption spectra of Ru-0T-1T were dominated by metal-to-ligand charge-transfer (3MLCT) states (τTA = 0.40-0.85 µs), but long-lived intraligand charge-transfer (3ILCT) states were observed in Ru-2T-4T (τTA = 25-148 µs). The 3ILCT energies of Ru-3T and Ru-4T were computed to be 1.6 and 1.4 eV, respectively. The phototherapeutic efficacy against melanoma cells (SK-MEL-28) under broad-band visible light (400-700 nm) increases as n = 0 → 4: Ru-0T was inactive up to 300 µM, Ru-1T-2T were moderately active (EC50 ∼ 600 nM, PI = 200), and Ru-3T (EC50 = 57 nM, PI > 1100) and Ru-4T (EC50 = 740 pM, PI = 114,000) were the most phototoxic. The activity diminishes with longer wavelengths of light and is completely suppressed for all complexes except Ru-3T and Ru-4T in hypoxia. Ru-4T is the more potent and robust PS in 1% O2 over seven biological replicates (avg EC50 = 1.3 µM, avg PI = 985). Ru-3T exhibited hypoxic activity in five of seven replicates, underscoring the need for biological replicates in compound evaluation. Singlet oxygen sensitization is likely responsible for phototoxic effects of the compounds in normoxia, but the presence of redox-active excited states may facilitate additional photoactive pathways for complexes with three or more thienyl groups. The 3ILCT state with its extended lifetime (30-40× longer than the 3MLCT state for Ru-3T and Ru-4T) implicates its predominant role in photocytotoxicity.


Assuntos
Fotoquimioterapia , Rutênio , Fenantrolinas/farmacologia , Fenantrolinas/química , Oxigênio Singlete/química , Rutênio/farmacologia , Rutênio/química , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/química , Ligantes
3.
Biomacromolecules ; 24(8): 3887-3897, 2023 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-37467426

RESUMO

The role of nitric oxide (NO) as an "unconventional" therapeutic and the strict dependence of biological effects on its concentration require the generation of NO with precise spatiotemporal control. The development of precursors and strategies to activate NO release by excitation in the so-called "therapeutic window" with highly biocompatible and tissue-penetrating red light is desirable and challenging. Herein, we demonstrate that one-photon red-light excitation of Verteporfin, a clinically approved photosensitizer (PS) for photodynamic therapy, activates NO release, in a catalytic fashion, from an otherwise blue-light activatable NO photodonor (NOPD) with an improvement of about 300 nm toward longer and more biocompatible wavelengths. Steady-state and time-resolved spectroscopic and photochemical studies combined with theoretical calculations account for an NO photorelease photosensitized by the lowest triplet state of the PS. In view of biological applications, the water-insoluble PS and NOPD have been co-entrapped within water-dispersible, biodegradable polymeric nanoparticles (NPs) of mPEG-b-PCL (about 84 nm in diameter), where the red-light activation of NO release takes place even more effectively than in an organic solvent solution and almost independently by the presence of oxygen. Moreover, the ideal spectroscopic prerequisites and the restricted environment of the NPs permit the green-fluorescent co-product formed concomitantly to NO photorelease to communicate with the PS via Förster resonance energy transfer. This leads to an enhancement of the typical red emission of the PS offering the possibility of a double color optical reporter useful for the real-time monitoring of the NO release through fluorescence techniques. The suitability of this strategy applied to the polymeric NPs as potential nanotherapeutics was evaluated through biological tests performed by using HepG2 hepatocarcinoma and A375 melanoma cancer cell lines. Fluorescence investigation in cells and cell viability experiments demonstrates the occurrence of the NO release under one-photon red-light illumination also in the biological environment. This confirms that the adopted strategy provides a valuable tool for generating NO from an already available NOPD, otherwise activatable with the poorly biocompatible blue light, without requiring any chemical modification and the use of sophisticated irradiation sources.

4.
Phys Chem Chem Phys ; 24(32): 19584-19594, 2022 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-35943094

RESUMO

The photoreactivity of relatively large transition metal complexes is often limited to the description of the static potential energy surfaces of the involved electronic states. While useful to grasp some physical grounds of the photoinduced molecular responses, this approach does not statistically sample the multiple molecular degrees of freedom of the systems under investigation, which grow significantly if we consider the explicit coupling with the environment, and does not consider dynamic effects. The problem is even more complex if the reactivity takes place in the excited state. The present work uses state-of-the-art multiscale QM/MM dynamics to describe the photoactivation of a Pt(II)-unit of an in silico designed two-component Os(II)-Pt(II) assembly proposed for a dual anticancer approach, by explicitly accounting for both dynamic and environmental effects. We clearly identify a transition state region with partial metal-to-metal charge transfer (3MMCT) character with no precedents in the scarce Ru(II)-Pt(II) analogues, indicative of a large synergistic effect between the Os(II) and Pt(II) metals and crucial in the photolabilization process of the Pt(II)-Cl bond. This is the first evidence of the ability of Os(II) to promote photoactivation of the Pt(II)-moiety, a contingency that would open new perspectives in this emerging field. The designed complex is therefore able to combine the traditional activity in photodynamic therapy (PDT) with the photoactivated chemotherapy (PCT) exerted by the Pt(II) unit, representing a new paradigm for a combined PDT/PCT anticancer approach while providing an advance in the methodology used to describe the photochemistry of transition-metal complexes in solution.


Assuntos
Antineoplásicos , Complexos de Coordenação , Fotoquimioterapia , Elementos de Transição , Antineoplásicos/química , Complexos de Coordenação/química , Fotoquímica , Elementos de Transição/química
5.
J Am Chem Soc ; 144(18): 8317-8336, 2022 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-35482975

RESUMO

Ru(II) complexes that undergo photosubstitution reactions from triplet metal-centered (3MC) excited states are of interest in photochemotherapy (PCT) due to their potential to produce cytotoxic effects in hypoxia. Dual-action systems that incorporate this stoichiometric mode to complement the oxygen-dependent photosensitization pathways that define photodynamic therapy (PDT) are poised to maintain antitumor activity regardless of the oxygenation status. Herein, we examine the way in which these two pathways influence photocytotoxicity in normoxia and in hypoxia using the [Ru(dmp)2(IP-nT)]2+ series (where dmp = 2,9-dimethyl-1,10-phenanthroline and IP-nT = imidazo[4,5-f][1,10]phenanthroline tethered to n = 0-4 thiophene rings) to switch the dominant excited state from the metal-based 3MC state in the case of Ru-phen-Ru-1T to the ligand-based 3ILCT state for Ru-3T and Ru-4T. Ru-phen-Ru-1T, having dominant 3MC states and the largest photosubstitution quantum yields, are inactive in both normoxia and hypoxia. Ru-3T and Ru-4T, with dominant 3IL/3ILCT states and long triplet lifetimes (τTA = 20-25 µs), have the poorest photosubstitution quantum yields, yet are extremely active. In the best instances, Ru-4T exhibit attomolar phototoxicity toward SKMEL28 cells in normoxia and picomolar in hypoxia, with phototherapeutic index values in normoxia of 105-1012 and 103-106 in hypoxia. While maximizing excited-state deactivation through photodissociative 3MC states did not result in bonafide dual-action PDT/PCT agents, the study has produced the most potent photosensitizer we know of to date. The extraordinary photosensitizing capacity of Ru-3T and Ru-4T may stem from a combination of very efficient 1O2 production and possibly complementary type I pathways via 3ILCT excited states.


Assuntos
Fotoquimioterapia , Rutênio , Humanos , Hipóxia , Fenantrolinas , Fármacos Fotossensibilizantes/farmacologia , Rutênio/farmacologia
6.
Molecules ; 27(3)2022 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-35164228

RESUMO

Three new palladium complexes ([Pd(DABA)Cl2], [Pd(CPDA)Cl2], and [Pd(HZPY)Cl2]) bearing dinitrogen ligands (DABA: 3,4-diaminobenzoic acid; CPDA: 4-chloro-o-phenylenediamine; HZPY: 2-hydraziniopyridine) were synthesized, characterized, and tested against breast cancer (MCF-7), prostate carcinoma cell line (PC3) and liver carcinoma cell line (HEPG2). [Pd(DABA)Cl2] complex exhibited the highest inhibition percentage, lying between 68-71%. The hydrolysis mechanism of each palladium complex, the key step preceding the binding to the biological target, as well as their photophysical properties were explored by means of DFT and TDDFT computations. Results indicate a faster hydrolysis process for the Pd(DABA)Cl2 complex. The computed activation energies for the first and second hydrolysis processes suggest that all the compounds could reach DNA in their monohydrated form.


Assuntos
Antineoplásicos/síntese química , Antineoplásicos/farmacologia , Complexos de Coordenação/síntese química , Complexos de Coordenação/farmacologia , Neoplasias/tratamento farmacológico , Nitrogênio/química , Paládio/química , Humanos , Células Tumorais Cultivadas
7.
Inorg Chem ; 59(22): 16341-16360, 2020 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-33126792

RESUMO

Hypoxia presents a challenge to anticancer therapy, reducing the efficacy of many available treatments. Photodynamic therapy is particularly susceptible to hypoxia, given that its mechanism relies on oxygen. Herein, we introduce two new osmium-based polypyridyl photosensitizers that are active in hypoxia. The lead compounds emerged from a systematic study of two Os(II) polypyridyl families derived from 2,2'-bipyridine (bpy) or 4,4'-dimethyl-2,2'-bipyridine (dmb) as coligands combined with imidazo[4,5-f][1,10]phenanthroline ligands tethered to n = 0-4 thiophenes (IP-nT). The compounds were characterized and investigated for their spectroscopic and (photo)biological activities. The two hypoxia-active Os(II) photosensitizers had n = 4 thiophenes, with the bpy analogue 1-4T being the most potent. In normoxia, 1-4T had low nanomolar activity (half-maximal effective concentration (EC50) = 1-13 nM) with phototherapeutic indices (PI) ranging from 5500 to 55 000 with red and visible light, respectively. A sub-micromolar potency was maintained even in hypoxia (1% O2), with light EC50 and PI values of 732-812 nM and 68-76, respectively -currently among the largest PIs for hypoxic photoactivity. This high degree of activity coincided with a low-energy, long-lived (0.98-3.6 µs) mixed-character intraligand charge-transfer (3ILCT)/ligand-to-ligand charge-transfer (3LLCT) state only accessible in quaterthiophene complexes 1-4T and 2-4T. The coligand identity strongly influenced the photophysical and photobiological results in this study, whereby the bpy coligand led to longer lifetimes (3.6 µs) and more potent photo-cytotoxicity relative to those of dmb. The unactivated compounds were relatively nontoxic both in vitro and in vivo. The maximum tolerated dose for 1-4T and 2-4T in mice was greater than or equal to 200 mg kg-1, an excellent starting point for future in vivo validation.


Assuntos
Antineoplásicos/farmacologia , Complexos de Coordenação/farmacologia , Osmio/farmacologia , Fotoquimioterapia , Fármacos Fotossensibilizantes/farmacologia , Tiofenos/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Hipóxia Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Complexos de Coordenação/síntese química , Complexos de Coordenação/química , Teoria da Densidade Funcional , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Osmio/química , Fármacos Fotossensibilizantes/síntese química , Fármacos Fotossensibilizantes/química , Tiofenos/química , Células Tumorais Cultivadas
8.
Chem Sci ; 11(36): 9784-9806, 2020 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-33738085

RESUMO

Hypoxia presents a two-fold challenge in the treatment of cancer, as low oxygen conditions induce biological changes that make malignant tissues simultaneously more aggressive and less susceptible to standard chemotherapy. This paper reports the first metal-based photosensitizer that approaches the ideal properties for a phototherapy agent. The Os(phen)2-based scaffold was combined with a series of IP-nT ligands, where phen = 1,10-phenanthroline and IP-nT = imidazo[4,5-f][1,10]phenanthroline tethered to n = 0-4 thiophene rings. Os-4T (n = 4) emerged as the most promising complex in the series, with picomolar activity and a phototherapeutic index (PI) exceeding 106 in normoxia. The photosensitizer exhibited an unprecedented PI > 90 (EC50 = 0.651 µM) in hypoxia (1% O2) with visible and green light, and a PI > 70 with red light. Os-4T was also active with 733 nm near-infrared light (EC50 = 0.803 µM, PI = 77) under normoxia. Both computation and spectroscopic studies confirmed a switch in the nature of the lowest-lying triplet excited state from triplet metal-to-ligand charge transfer (3MLCT) to intraligand charge transfer (3ILCT) at n = 3, with a lower energy and longer lifetime for n = 4. All compounds in the series were relatively nontoxic in the dark but became increasingly phototoxic with additional thiophenes. These normoxic and hypoxic activities are the largest reported to date, demonstrating the utility of osmium for phototherapy applications. Moreover, Os-4T had a maximum tolerated dose (MTD) in mice that was >200 mg kg-1, which positions this photosensitizer as an excellent candidate for in vivo applications.

9.
Inorg Chem ; 58(15): 9882-9889, 2019 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-31343162

RESUMO

Two-component PtII-BODIPY dyes were recently proposed as potential multitarget agents able to conjugate the photobased photodynamic therapy (PDT) treatment with the classical chemotherapy approach based on PtII complexes. A careful first-principle investigation is herein presented on the above-mentioned conjugates (Pt-1 and Pt-2) and on the two metal-free precursors (1 and 2), aimed at revealing the influence of the platinum moiety on the physicochemical behavior of the photosensitizer (PS) and to inspect, in turn, the possible modulation of the hydrolysis rate of the PtII ligand induced by the PS. The investigated photophysical properties for singlet and triplet states and the amplitude of the computed spin-orbit matrix elements reveal that the Pt-containing systems are able to enhance the cytotoxic 1O2 production. The PtII moiety, instead, follows an activation mechanism similar to that previously found for cisplatin and its analogues already used in cancer therapy.

11.
Chemistry ; 22(27): 9162-8, 2016 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-27249166

RESUMO

Ru(II) -Pt(II) complexes are a class of bioactive molecules of interest as anticancer agents that combine a light-absorbing chromophore with a cisplatin-like unit. The results of a DFT and TDDFT investigation of a Ru(II) complex and its conjugate with a cis-PtCl2 moiety reveal that a synergistic effect of the metals makes the assembly a promising multitarget anticancer drug. Inspection of type I and type II photoreactions and spin-orbit coupling computations reveals that the cis-PtCl2 moiety improves the photophysical properties of the Ru(II) chromophore, ensuring efficient singlet oxygen generation and making the assembly suitable for photodynamic therapy. At the same time, the Ru(II) chromophore promotes a new alternative activation mechanism of the Pt(II) ligand via a triplet metal-to-ligand charge transfer ((3) MLCT) state, before reaching the biological target. The importance of the supramolecular architecture is accurately derived, opening interesting new perspectives on the use of bimetallic Ru(II) -Pt(II) assemblies in a combined anticancer approach.


Assuntos
Antineoplásicos/química , Complexos de Coordenação/química , Platina/química , Rutênio/química , Antineoplásicos/metabolismo , Complexos de Coordenação/metabolismo , Cinética , Ligantes , Teoria Quântica , Oxigênio Singlete/química , Oxigênio Singlete/metabolismo , Espectrofotometria Ultravioleta , Termodinâmica
12.
Molecules ; 21(3): 288, 2016 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-26938516

RESUMO

The main photophysical properties of a series of expanded bacteriochlorins, recently synthetized, have been investigated by means of DFT and TD-DFT methods. Absorption spectra computed with different exchange-correlation functionals, B3LYP, M06 and ωB97XD, have been compared with the experimental ones. In good agreement, all the considered systems show a maximum absorption wavelength that falls in the therapeutic window (600-800 nm). The obtained singlet-triplet energy gaps are large enough to ensure the production of cytotoxic singlet molecular oxygen. The computed spin-orbit matrix elements suggest a good probability of intersystem spin-crossing between singlet and triplet excited states, since they result to be higher than those computed for 5,10,15,20-tetrakis-(m-hydroxyphenyl)chlorin (Foscan©) already used in the photodynamic therapy (PDT) protocol. Because of the investigated properties, these expanded bacteriochlorins can be proposed as PDT agents.


Assuntos
Fármacos Fotossensibilizantes/síntese química , Fármacos Fotossensibilizantes/farmacologia , Porfirinas/síntese química , Porfirinas/farmacologia , Simulação por Computador , Estrutura Molecular , Fotoquimioterapia , Fármacos Fotossensibilizantes/química , Porfirinas/química , Teoria Quântica , Oxigênio Singlete/química , Relação Estrutura-Atividade
13.
Phys Chem Chem Phys ; 17(36): 23595-601, 2015 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-26299352

RESUMO

Absorption electronic spectra, singlet-triplet energy gaps and spin-orbit matrix elements have been computed at DFT and TDDFT levels of theory for a series of substituted Zn(ii)-phthalocyanines (ZnPcs), recently proposed as potential photosensitizers in photodynamic therapy (PDT). Their photophysical properties have been rationalized in the light of the substitution pattern which includes the position, the donor or withdrawing nature, and the relative donating force of peripheral and non-peripheral ligands. Moreover, the effects of heavy substituents on these properties have been investigated by introducing a different number of iodine atoms on the phthalocyanine macrocycle. The results show that the substitution pattern significantly affects the absorption spectra, but just slightly modifies the ΔES-T values. The presence of heavy atoms produces a significant effect on the photophysical properties of the investigated compounds enhancing the spin-orbit coupling (SOC) values.

14.
Chem Commun (Camb) ; 51(39): 8369-72, 2015 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-25891839

RESUMO

The O2 activation process by a CDO biomimetic system has been herein investigated to gain mechanistic details on the unknown reaction mechanism. The outcomes of the DFT study show that the functional model efficiently mimics the enzymatic process, the reaction proceeding with a feasible activation barrier via multistate reactivity patterns.


Assuntos
Complexos de Coordenação/química , Cisteína/química , Ferro/química , Biomimética , Oxigênio/química
15.
Chemistry ; 21(9): 3736-45, 2015 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-25582757

RESUMO

The reaction mechanism for the hydrolysis of trimethyl phosphate and of the obtained phosphodiester by the di-Co(II) derivative of organophosphate degrading enzyme from Agrobacterium radiobacter P230(OpdA), have been investigated at density functional level of theory in the framework of the cluster model approach. Both mechanisms proceed by a multistep sequence and each catalytic cycle begins with the nucleophilic attack by a metal-bound hydroxide on the phosphorus atom of the substrate, leading to the cleavage of the phosphate-ester bond. Four exchange-correlation functionals were used to derive the potential energy profiles in protein environments. Although the enzyme is confirmed to work better as triesterase, as revealed by the barrier heights in the rate-limiting steps of the catalytic processes, its promiscuous ability to hydrolyze also the product of the reaction has been confirmed. The important role played by water molecules and some residues in the outer coordination sphere has been elucidated, while the binuclear Co(II) center accomplishes both structural and catalytic functions. To correctly describe the electronic configuration of the d shell of the metal ions, high- and low-spin arrangement jointly with the occurrence of antiferromagnetic coupling, have been herein considered.


Assuntos
Cobalto/química , Esterases/química , Compostos Organofosforados/química , Sítios de Ligação , Biocatálise , Cristalografia por Raios X , Imãs , Modelos Moleculares , Especificidade por Substrato
16.
J Comput Chem ; 35(29): 2107-13, 2014 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-25178476

RESUMO

The main photophysical properties of a series of recently synthetized 1,2- and 1,3-squaraines, including absorption electronic spectra, singlet-triplet energy gaps, and spin-orbit matrix elements, have been investigated by means of density functional theory (DFT) and time-dependent DFT approaches. A benchmark of three exchange-correlation functionals has been performed in six different solvent environments. The investigated 1,2 squaraines have been found to possess two excited triplet states (T1 and T2) that lie below the energy of the excited singlet one (S1). The radiationless intersystem spin crossing efficiency is thus enhanced in both the studied systems and both the transitions could contribute to the excited singlet oxygen production. Moreover, they have a singlet-triplet energy gap higher than that required to generate the cytotoxic singlet oxygen species. According to our data, these compounds could be used in photodynamic therapy applications that do not require high tissue penetration.

17.
J Mol Model ; 20(5): 2250, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24810464

RESUMO

A density functional theory (DFT) study of formic acid decomposition, catalyzed by a model of the trans-[Ru(TPPTS)2(H2O)4]²âº complex, has been performed. A mechanism comprising two competitive catalytic cycles, which have as a common intermediate a monohydride ruthenium complex, has been hypothesized in literature on the basis of high pressure NMR experiments. To explain the observed increase in H2 production rate during the process, it has been suggested by the same authors that the reaction occurs entering the second proposed cycle (Cycle 2), although none of the complexes assumed to be formed have been experimentally observed. To gain more insights into the reaction mechanism, a detailed investigation of both the proposed catalytic cycles has been carried out. To describe the energy profiles, different accurate computational protocols have been employed. Our computations reveal that molecular hydrogen cannot be produced more rapidly following cycle 2, since it requires a larger amount of energy to occur. Moreover, the release of molecular hydrogen has been found to be the step that limits the reaction rate in both cycles, instead of the CO2 dissociation as hypothesized by the authors.

18.
Phys Chem Chem Phys ; 16(25): 12773-81, 2014 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-24836609

RESUMO

trans-Resveratrol has shown to play an important role in a variety of biological and medical processes such as reactive oxygen species (ROS) scavenging, inhibition of apoptosis and induction of cell survival. In light of the fact that resveratrol and its oligomers were found to be selective singlet oxygen (1)O2 quenchers, we report here a systematic study on the reactivity of trans-resveratrol toward molecular oxygen in acetone simulated media. On the basis of the controversial hypotheses reported in the literature we explored, at density functional levels of theory, two different mechanisms. The first one leads to a resveratrol quinone product via an endoperoxide intermediate by attack of (1)O2 on the resorcinol ring, assisted (pathway (b)) or not (pathway (a)) by a water molecule. The second mechanism, in which the singlet oxygen reacts with the double bond connecting the two resveratrol rings leading to benzaldehyde products, involves the formation of a dioxetane intermediate. As the outcomes of our computational analysis show that the latter mechanism is kinetically more favorable than the former one, it is likely that when trans-resveratrol reacts with singlet oxygen a dioxetane intermediate is formed.


Assuntos
Oxigênio/química , Estilbenos/química , Reação de Cicloadição , Resveratrol , Termodinâmica
19.
J Chem Theory Comput ; 10(9): 4006-13, 2014 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-26588544

RESUMO

Density functional theory and its time-dependent extension (DFT, TDDFT) has been herein employed to elucidate the structural and electronic properties for a series of isoindole-boron dipyrromethene (isoindole-BODIPY) derivatives. The role played by both the nature and the positions of the substituents on intersystem spin-crossing has been investigated computing the spin-orbit matrix elements between singlet and triplet excited state wave functions weighted by the TDDFT transition coefficients. Their potential therapeutic use as photosensitizers in photodynamic therapy (PDT) is proposed on the basis of their strong absorbance in the red part of the visible spectrum, vertical triplet energies resulting higher than 0.98 eV, and the spin-orbit matrix elements that result to be comparable with different drugs already used in PDT.

20.
Chemistry ; 19(42): 14081-9, 2013 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-24014428

RESUMO

In order to elucidate the catalytic mechanism of the Mn-Mn containing serine/threonine protein phosphatase 5 (PP5), we present a density functional theory study with a cluster model approach. According to our results, the reaction occurs through an in-line concerted transition state with an energy of 15.8 kcal mol(-1) , and no intermediates are formed. The important role played by His304 and Asp274 as stabilizers of the leaving group has been shown, whereas the role played by the metal ions seems to be mostly electrostatic. The indispensable requirement of having a neutral active center has been demonstrated by testing different protonation states of the cluster model. We have shown also the importance of describing properly the electronic configuration of the Mn-Mn binuclear centers.


Assuntos
Manganês/química , Proteínas Nucleares/química , Fosfoproteínas Fosfatases/química , Catálise , Íons/química , Modelos Moleculares , Teoria Quântica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...