Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Microb Ecol ; 79(3): 756-769, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31612324

RESUMO

Wild birds are frequently exposed to the zoonotic tick-borne bacteria Borrelia burgdorferi sensu lato (s.l.), and some bird species act as reservoirs for some Borrelia genospecies. Studying the tropism of Borrelia in the host, how it is sequestered in different organs, and whether it is maintained in circulation and/or in the host's skin is important to understand pathogenicity, infectivity to vector ticks and reservoir competency.We evaluated tissue dissemination of Borrelia in blackbirds (Turdus merula) and great tits (Parus major), naturally and experimentally infected with Borrelia genospecies from enzootic foci. We collected both minimally invasive biological samples (feathers, skin biopsies and blood) and skin, joint, brain and visceral tissues from necropsied birds. Infectiousness of the host was evaluated through xenodiagnoses and infection rates in fed and moulted ticks. Skin biopsies were the most reliable method for assessing avian hosts' Borrelia infectiousness, which was supported by the agreement of infection status results obtained from the analysis of chin and lore skin samples from necropsied birds and of their xenodiagnostic ticks, including a significant correlation between the estimated concentration of Borrelia genome copies in the skin and the Borrelia infection rate in the xenodiagnostic ticks. This confirms a dermatropism of Borrelia garinii, B. valaisiana and B. turdi in its avian hosts. However, time elapsed from exposure to Borrelia and interaction between host species and Borrelia genospecies may affect the reliability of skin biopsies. The blood was not useful to assess infectiousness of birds, even during the period of expected maximum spirochetaemia. From the tissues sampled (foot joint, liver, spleen, heart, kidney, gut and brain), Borrelia was detected only in the gut, which could be related with infection mode, genospecies competition, genospecies-specific seasonality and/or excretion processes.


Assuntos
Doenças das Aves/microbiologia , Grupo Borrelia Burgdorferi/fisiologia , Reservatórios de Doenças/veterinária , Doença de Lyme/veterinária , Aves Canoras , Animais , Reservatórios de Doenças/microbiologia , Vetores de Doenças , Feminino , Doença de Lyme/microbiologia , Masculino
2.
Mol Ecol ; 29(3): 485-501, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31846173

RESUMO

Birds are hosts for several zoonotic pathogens. Because of their high mobility, especially of longdistance migrants, birds can disperse these pathogens, affecting their distribution and phylogeography. We focused on Borrelia burgdorferi sensu lato, which includes the causative agents of Lyme borreliosis, as an example for tick-borne pathogens, to address the role of birds as propagation hosts of zoonotic agents at a large geographical scale. We collected ticks from passerine birds in 11 European countries. B. burgdorferi s.l. prevalence in Ixodes spp. was 37% and increased with latitude. The fieldfare Turdus pilaris and the blackbird T. merula carried ticks with the highest Borrelia prevalence (92 and 58%, respectively), whereas robin Erithacus rubecula ticks were the least infected (3.8%). Borrelia garinii was the most prevalent genospecies (61%), followed by B. valaisiana (24%), B. afzelii (9%), B. turdi (5%) and B. lusitaniae (0.5%). A novel Borrelia genospecies "Candidatus Borrelia aligera" was also detected. Multilocus sequence typing (MLST) analysis of B. garinii isolates together with the global collection of B. garinii genotypes obtained from the Borrelia MLST public database revealed that: (a) there was little overlap among genotypes from different continents, (b) there was no geographical structuring within Europe, and (c) there was no evident association pattern detectable among B. garinii genotypes from ticks feeding on birds, questing ticks or human isolates. These findings strengthen the hypothesis that the population structure and evolutionary biology of tick-borne pathogens are shaped by their host associations and the movement patterns of these hosts.


Assuntos
Borrelia/genética , Ixodes/microbiologia , Doença de Lyme/microbiologia , Animais , Doenças das Aves/microbiologia , Europa (Continente) , Humanos , Tipagem de Sequências Multilocus/métodos , Aves Canoras/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...