Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Pharmaceuticals (Basel) ; 17(2)2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38399471

RESUMO

Propionibacterium acnes plays a critical role in the development of acne vulgaris. There has been a rise in the number of patients carrying P. acnes strains that are resistant to antibiotics. Thus, alternative anti-microbial agents are required. Zinc oxide (ZnO-NPs) and silver (Ag-NPs) nanoparticles can be used against several antibiotic-resistant bacteria. The impact of Ag-NPs and ZnO-NPs against two clinical strains of P. acnes, P1 and P2, and a reference strain, NCTC747, were investigated in this research. A chemical approach for the green synthesis of Ag-NPs and ZnO-NPs from Peganum harmala was employed. The microtiter plate method was used to examine the effects of NPs on bacterial growth, biofilm development, and biofilm eradication. A broth microdilution process was performed in order to determine minimal inhibitory (MIC) concentrations. Ag-NPs and ZnO-NPs had a spherical shape and average dimensions of 10 and 50 nm, respectively. MIC values for all P. acnes strains for Ag-NPs and ZnO-NPs were 125 µg/mL and 250 µg/mL, respectively. Ag-NP and ZnO-NP concentrations of 3.9- 62.5 µg/mL and 15-62.5 µg/mL significantly inhibited the growth and biofilm formation of all P. acnes strains, respectively. ZnO-NP concentrations of 15-62.5 µg/mL significantly inhibited the growth of NCTC747 and P2 strains. The growth of P1 was impacted by concentrations of 31.25 µg/mL and 62.5 µg/mL. Biofilm formation in the NCTC747 strain was diminished by a ZnO-NP concentration of 15 µg/mL. The clinical strains of P. acnes were only affected by ZnO-NP titres of more than 31.25 µg/mL. Established P. acne biofilm biomass was significantly reduced in all strains at a Ag-NP and ZnO-NP concentration of 62.5 µg/mL. The findings demonstrated that Ag-NPs and ZnO-NPs exert an anti-bacterial effect against P. acnes. Further research is required to determine their potential utility as a treatment option for acne.

2.
Discov Nano ; 19(1): 15, 2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38253925

RESUMO

In this work, iron oxide (Fe3O4) magnetic nanoparticles (MNPs) and graphene oxide (GO) nanosheets were prepared via the co-precipitation technique and the Modified Hummer method. Fe3O4 MNPs and GO nanosheets were combined to prepare Fe3O4/GO nanocomposite and subsequently conjugated with Digitonin (DIG) in order to obtain a dual-targeted delivery system based on DIG/Fe3O4/GO nanocomposite. SEM images reveal the presence of Fe3O4 MNPs at a scale of 100 nm, exhibiting dispersion between the GO nanosheets. Aggregation of the DIG/Fe3O4/GO nanocomposite was observed at various size scales. The XRD structural analysis confirms the crystal structure of the prepared samples. The Fe3O4 MNPs demonstrated the main XRD-diffracted peaks. Also, GO nanosheets exhibit crystalline characteristics on the (001) and (002) planes. The predominant peaks observed in the DIG/GO/Fe3O4 nanocomposite are attributed to the crystal phases of Fe3O4 MNPs. The FT-IR vibrational modes observed in the GO/DIG/Fe3O4 nanocomposite indicate the presence of crosslinking between GO nanosheet layers and the Fe3O4 MNPs. The antioxidant activity of the prepared samples was measured and the DIG/GO/Fe3O4 nanocomposite demonstrated a significantly high antioxidant activity in both 2-diphenyl-1-picrylhydrazyl (DPPH·) and 2,2-azino-bis-3-ethylbenzthiazoline-6-sulfonic acid (ABTS·+) tests.

3.
Sci Rep ; 13(1): 8876, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37264060

RESUMO

The high antibiotic resistance of Pseudomonas aeruginosa (PA) makes it critical to develop alternative antimicrobial agents that are effective and affordable. One of the many applications of silver nanoparticles (Ag NPs) is their use as an antimicrobial agent against bacteria resistant to common antibiotics. The key purpose of this research was to assess the antibacterial and antibiofilm effectiveness of biosynthesized Ag NPs against six biofilm-forming clinically isolated strains of PA and one reference strain (ATCC 27853). Ag NPs were biosynthesized using a seed extract of Peganum harmala as a reducing agent. Ag NPs were characterized by Ultraviolet-visible (UV-Vis) spectroscopy and scanning transmission electron microscopy (STEM). The effect of Ag NPs on biofilm formation and eradication was examined through micro-titer plate assays, and the minimal inhibitory (MIC) and minimum bactericidal (MBC) concentrations determined. In addition, real-time polymerase chain reactions (RT-PCR) were performed to examine the effects of Ag NPs on the expression of seven PA biofilm-encoding genes (LasR, LasI, LssB, rhIR, rhII, pqsA and pqsR). The biosynthesized Ag NPs were spherically-shaped with a mean diameter of 11 nm. The MIC for each PA strain was 15.6 µg/ml, while the MBC was 31.25 µg/ml. All PA strains exposed to Ag NPs at sub-inhibitory concentrations (0.22-7.5 µg/ml) showed significant inhibitory effects on growth and biofilm formation. Biomass and biofilm metabolism were reduced dependent on Ag NP concentration. The expression of the quorum-sensing genes of all strains were significantly reduced at an Ag NP concentration of 7.5 µg/ml. The results demonstrate the extensive in-vitro antibacterial and antibiofilm performance of Ag NPs and their potential in the treatment of PA infection. It is recommended that future studies examine the possible synergy between Ag NPs and antibiotics.


Assuntos
Anti-Infecciosos , Fibrose Cística , Nanopartículas Metálicas , Humanos , Pseudomonas aeruginosa , Prata/química , Nanopartículas Metálicas/uso terapêutico , Nanopartículas Metálicas/química , Testes de Sensibilidade Microbiana , Antibacterianos/farmacologia , Antibacterianos/química , Anti-Infecciosos/farmacologia
4.
Nanomaterials (Basel) ; 13(7)2023 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-37049294

RESUMO

We fabricated ferroelectric films of the organic molecular diisopropylammonium chloride (DIPAC) using the dip-coating technique and characterized their properties using various methods. Fourier-transform infrared, scanning electron microscopy, and X-ray diffraction analysis revealed the structural features of the films. We also performed ab-initio calculations to investigate the electronic and polar properties of the DIPAC crystal, which were found to be consistent with the experimental results. In particular, the optical band gap of the DIPAC crystal was estimated to be around 4.5 eV from the band structure total density-of-states obtained by HSE06 hybrid functional methods, in good agreement with the value derived from the Tauc plot analysis (4.05 ± 0.16 eV). The films displayed an island-like morphology on the surface and showed increasing electrical conductivity with temperature, with a calculated thermal activation energy of 2.24 ± 0.03 eV. Our findings suggest that DIPAC films could be a promising alternative to lead-based perovskites for various applications such as piezoelectric devices, optoelectronics, sensors, data storage, and microelectromechanical systems.

5.
Foodborne Pathog Dis ; 20(5): 177-185, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37097316

RESUMO

The demand for rapid and accurate detection methods for Salmonella Enteritidis necessitates the development of highly sensitive and specific biosensors to ensure proper monitoring of food safety and quality requirements in the food sector and to secure human health. This study focused on development of a polyaniline/zinc oxide (PANI/ZnO) nanocomposite film on a gold electrode conductometric immunosensor for detection of Salmonella Enteritidis. The sensor was modified with monoclonal anti-Salmonella Enteritidis antibodies as biorecognition elements. The fabricated sensor was able to detect and quantify the target pathogen within 30 min and showed a good detection range from 101 to 105 colony-forming units (CFU)/mL for Salmonella Enteritidis and a minimum detection limit of 6.44 CFU/mL in 0.1% peptone water. Additionally, the fabricated sensor showed good selectivity and detection limit toward the target bacterium and successfully determined Salmonella Enteritidis content in ultrahigh heat-treated skim milk samples without pretreatment of the food sample.


Assuntos
Técnicas Biossensoriais , Nanocompostos , Óxido de Zinco , Humanos , Animais , Salmonella enteritidis , Limite de Detecção , Leite/microbiologia , Imunoensaio
6.
BMC Res Notes ; 16(1): 23, 2023 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-36855182

RESUMO

OBJECTIVE: Because of the need to extensively study the synergistic activity of metallic nanoparticles, this study aimed to evaluate the antibacterial activity of mixed metallic nanoparticles, made by differing the weight mixing ratio. We prepared multi-metallic nanorods (NRs) by chemical reduction method, with different ratio combinations of silver Ag and copper Cu, two main batches of nanorods were produced: bimetallic mix made only of Ag-Cu, and trimetallic mix made of Ag-Cu and lithium Li, AgCu NRs and AgCuLi NRs respectively. NaOH was used in the synthesis for the co-reduction of salt precursors. Ag percentage was varied from 10 to 90% in bimetallic NRs but in the trimetallic NRs, which has a fixed ratio of Li (10%), the percentage of silver precursor was from 10 to 80%. The presence of metals was confirmed by energy dispersive X-rays (EDX) analysis. Ion release was detected using inductively coupled plasma spectrometer (ICP) and the values showed that NRs are effective source for ion supply for up to 24 h. The antibacterial activity of metallic NRs was tested against Staphylococcus aureus using Bauer Kirby method. RESULTS: The bi-synergistic mix of Ag and Cu generates more ions than the tri-synergistic mix of Ag, Cu, and Li. Nevertheless, the later was more efficient and showed higher antibacterial activity at lower concentrations. This effect is less likely to be attributed to modality of ion release. Indeed, the results of our work suggest that besides ion release, alloyed nanorods themselves are toxic and the trimetallic mix exhibited more biocidal activity, specifically at Ag salt concentrations of 30%, 50% and 70%.


Assuntos
Nanotubos , Infecções Estafilocócicas , Humanos , Lítio , Staphylococcus aureus , Prata/farmacologia , Antibacterianos/farmacologia , Íons , Cloreto de Sódio , Cloreto de Sódio na Dieta
7.
Sci Rep ; 13(1): 5096, 2023 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-36991258

RESUMO

There is a limitation in the range of effectual antibiotics due to the Pseudomonas aeruginosa (PA) infection due to its innate antimicrobial resistance. Researchers have therefore been concentrating their efforts to discover advanced and cost effective antibacterial agents among the ever-increasing PA bacterial resistance strains. It has been discovered that various nanoparticles can be employed as antimicrobial agents. Here, we evaluated the antibacterial properties of the Zinc Oxide nanoparticles (ZnO NPs), which was biosynthesized, being examined on six hospital strains of PA alongside a reference strain (ATCC 27853). A chemical approach was applied to biosynthesize the ZnO NPs from Olea europaea was performed, and confirmed by using X-ray diffraction and Scanning Electron Microscopes. The nanoparticles then applied their antibacterial properties to examine them against six clinically isolated PA strains alongside the reference strain. This process tested for the results of the minimum inhibitory concentration (MIC) and the minimum bactericidal concentration (MBC). The Growth, biofilm formation and eradication were analyzed. The influence of the differentiating degrees ZnO NPs in regard to Quorom sensing gene expression were further examined. The ZnO NPs exhibited a crystalline size and diameter (Dc) of 40-60 nm and both the MIC and MBC tests revealed positive outcomes of concentrations of 3 and 6 mg/ml for each PA strain, respectively. At sub inhibitory concentration, The ZnO NPs were found to significantly inhibit the growth and biofilm formation of all PA strains and decreases in the biomass and metabolic behavior of PA established biofilms; these decreases varied depending on the dosage. At ZnO NPs concentrations of 900 µg/ml, the expression of majority of quorum sensing genes of all strains were significantly reduced, at ZnO NPs concentrations of 300 µg/ml, few genes were significantly impacted. In conclusion, the treatment of PA and could be other antibiotic resistant bacteria can therefore be approached by using ZnO NPs as it has been uncovered that they withhold advanced antibacterial properties.


Assuntos
Olea , Infecções por Pseudomonas , Óxido de Zinco , Óxido de Zinco/química , Olea/metabolismo , Pseudomonas aeruginosa , Antibacterianos/farmacologia , Antibacterianos/química , Biofilmes
8.
Polymers (Basel) ; 14(3)2022 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-35160447

RESUMO

In this study, polymer membrane(s) impregnated with carbon nanotubes (CNTs) were developed, characterized and evaluated for removing phenolic compounds from olive mill wastewater; thus, protecting the environment and public health. Polyethersulfone/functionalized, multi-walled carbon nanotube (PES/fCNTs) membranes were synthesized via the phase inversion method using PES and acid-treated CNTs. The prepared membranes were then characterized by scanning electron microscopy (SEM), Fourier-transform infrared spectroscopy (FTIR) and contact angle. Results obtained from this study indicate a more hydrophilic surface for the prepared PES/fCNTs membranes, with a higher pure water flux compared to the polyethersulfone (PES) membranes. In addition, the amount of fCNTs in the membranes was found to be the most significant factor affecting the morphology and water flux of the membranes. The PES/fCNTs membranes at 1 bar with 0 wt.% and 1 wt.% of CNTs showed water flux of 37.8 and 69.71 kg/h.m2, respectively. In addition, PES/fCNTs membranes with 0.5 wt.% fCNTs showed the highest total phenol content removal of 74%.

9.
Polymers (Basel) ; 13(19)2021 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-34641104

RESUMO

A conductometric immunosensor was developed for the detection of one of the most common foodborne pathogens, Escherichia coli O157:H7 (E. coli O157:H7), by conductometric sensing. The sensor was built based on a polyaniline/zinc oxide (PANI/ZnO) nanocomposite film spin-coated on a gold electrode. Then, it was modified with a monoclonal anti-E. coli O157:H7 antibody as a biorecognition element. The fabricated nanostructured sensor was able to quantify the pathogens under optimal detection conditions, within 30 min, and showed a good detection range from 101 to 104 CFU/mL for E. coli O157:H7 and a minimum detection limit of 4.8 CFU/mL in 0.1% peptone water. The sensor efficiency for detecting bacteria in food matrices was tested in ultra-heat-treated (UHT) skim milk. E. coli O157:H7 was detected at concentrations of 101 to 104 CFU/mL with a minimum detection limit of 13.9 CFU/mL. The novel sensor was simple, fast, highly sensitive with excellent specificity, and it had the potential for rapid sample processing. Moreover, this unique technique for bacterial detection could be applicable for food safety and quality control in the food sector as it offers highly reliable results and is able to quantify the target bacterium.

10.
Polymers (Basel) ; 13(19)2021 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-34641266

RESUMO

This paper studied the photocatalytic degradation of methylene blue (MB) using polymeric membrane impregnated with ZnO nanostructures under UV-light and sunlight irradiation. ZnO nanoparticles and ZnO nanowires were prepared using the hydrothermal technique. Cellulose acetate polymeric membranes were fabricated by the phase inversion method using dimethylformamide (DMF) as a solvent and ZnO nanostructures. The structural properties of the nanostructures and the membranes were investigated using XRD, SEM, FTIR, and TGA measurements. The membranes were tested for photocatalytic degradation of MB using a UV lamp and a sunlight simulator. The photocatalytic results under sunlight irradiation in the presence of cellulose acetate impregnated with ZnO nanoparticles (CA-ZnO-NP) showed a more rapid degradation of MB (about 75%) compared to the results obtained under UV-light irradiation degradation (about 30%). The results show that CA-ZnO-NP possesses the photocatalytic ability to degrade MB efficiently at different levels under UV-light and sunlight irradiation. Modified membranes with ZnO nanoparticles and ZnO nanowires were found to be chemically stable, recyclable, and reproducible. The addition of ZnO nanostructure to the cellulose membranes generally enhanced their photocatalytic activity toward MB, making these potential membranes candidates for removing organic pollutants from aqueous solutions.

11.
Ann Med Surg (Lond) ; 59: 199-203, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33204413

RESUMO

BACKGROUND: With the continuous uptrend in the number of medical student graduates and the limited availability of postgraduate residency positions, the process of selecting the most appropriately qualified candidates to fill these positions remains challenging. This necessitates implementing objectively measured, distinguishing, and transparent selection process. The purpose of this study is to share our model of single-center resident selection for postgraduate residency programs to serve as a guide for other institutions. MATERIALS AND METHODS: We reviewed the process of residency program selection at our institution. Data were collected about the application process, demographic characteristics, medical school location and GPA, entry exam score, requested specialties, and match results. The proposed selection criteria and their association with the match results were reported. Factors associated with matching with the first two selections were analyzed. RESULTS: 785 physicians applied to fill 96 positions at nineteen residency programs. 443 (56%) were males, 686 (87%) graduated from Jordanian medical schools. Half failed the entry exam and were excluded from competition. Seventy-two out of 96 (75%) matched with either of their first two requested specialties. The highest-in-demand programs were ophthalmology, otolaryngology and dermatology. Although a GPA of more than 80% increased the likelihood of matching with the top two requested specialties, an entry exam score of more than 70% was the main determining factor (AOR 8.7, 95% C.I. 2.4, 31.9). CONCLUSIONS: The selection process for postgraduate residency programs is highly competitive. To avoid selection bias, transparent and objectively measured criteria are applied in the selection model. Clinical performance and medical knowledge reflected by the cumulative GPA and entry exam score are the most significant determinants for acceptance.

12.
Int J Food Microbiol ; 334: 108838, 2020 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-32896745

RESUMO

White brined cheese may serve as an ideal medium for the growth of foodborne pathogens including E. coli O157:H7. The objectives of this study were i) to evaluate the inhibitory effects of zinc oxide (ZnO) nanoparticles against E. coli O157:H7 at 10 or 37 °C using broth dilution; ii) to address the post-process contamination of white brined cheese with E. coli O157:H7 by using chitosan coating with or without ZnO nanoparticles during storage for 28 d at 4 and 10 °C; and iii) to study the physicochemical characteristics of chitosan coating containing ZnO nanoparticles. ZnO nanoparticles at ≥0.0125% inhibited the growth of three E. coli O157:H7 strains at both 37 and 10 °C. The chitosan coating with or without ZnO nanoparticles significantly reduced the initial numbers of E. coli O157:H7 in white brined cheese by 2.5 and 2.8 log CFU/g, respectively, when stored at 4 °C or by 1.9 and 2.1 log CFU/g, respectively, when stored at 10 °C. The chitosan-ZnO nanoparticle coating was not significantly different (p > 0.05) but was slightly better than chitosan alone as an active, smart packaging material in food applications.


Assuntos
Anti-Infecciosos/farmacologia , Queijo/microbiologia , Quitosana/química , Escherichia coli O157/efeitos dos fármacos , Óxido de Zinco/química , Anti-Infecciosos/química , Quitosana/farmacologia , Contagem de Colônia Microbiana , Escherichia coli O157/crescimento & desenvolvimento , Microbiologia de Alimentos , Armazenamento de Alimentos , Nanopartículas/química , Sais/análise , Temperatura , Óxido de Zinco/farmacologia
13.
AAPS PharmSciTech ; 21(5): 191, 2020 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-32661587

RESUMO

Polysaccharide-based aerogels are promising drug carriers. Being nanoporous with a high specific surface area allows their use as a drug vehicle for various delivery routes. Intratracheal and intravenous administration of free cisplatin causes toxicity in the rat liver, lungs, and kidneys. In this work, microspherical particles based on alginate-chitosan without a traditional crosslinker were evaluated for targeted delivery of cisplatin by intratracheal administration. The aerogel particles were prepared using the emulsion gelation method, followed by supercritical carbon dioxide extraction. Loading of cisplatin on the prepared porous particles was performed by impregnation using supercritical fluid technology. The prepared carrier and the loaded drug were evaluated for drug content, release, and in vivo acute and subacute toxicity. Cisplatin was successfully loaded (percent drug loading > 76%) on the prepared carrier (particle size = 0.433 ± 0.091 µm) without chemically interacting with the carrier and without losing its crystal form. Sixty percent of cisplatin was released within 2 h, and the rest was loaded inside the polymer pores and had a sustained first-order release over 6 h. Loading cisplatin on the carrier developed herein reduced the cisplatin lung toxicity but increased the liver toxicity after intratracheal administration with nephrotoxicity being proportional to cisplatin dose in case of carrier-loaded cisplatin. Moreover, loading cisplatin on the carrier significantly reduced mortality rate and prevented weight loss in rats as compared to free cisplatin in subacute studies after intratracheal administration. Thus, the developed carrier showed high potential for targeted delivery of cisplatin for lung cancer treatment by inhalation. Graphical abstract.


Assuntos
Alginatos/química , Antineoplásicos/uso terapêutico , Quitosana/química , Portadores de Fármacos/química , Desenvolvimento de Medicamentos , Neoplasias Pulmonares/tratamento farmacológico , Nanoporos , Administração por Inalação , Animais , Antineoplásicos/química , Antineoplásicos/toxicidade , Cisplatino , Tamanho da Partícula , Polímeros , Porosidade , Ratos , Solubilidade
14.
Vet World ; 11(10): 1428-1432, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30532497

RESUMO

AIM: The aim of the study was to evaluate the antibacterial effects of zinc oxide nanoparticles (ZnO-NPs) and its possible alternative use for the treatment for mastitis in sheep and to determine the minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of ZnO-NPs against multidrug-resistant Staphylococcus aureus and Escherichia coli strains isolated from subclinical mastitis cases in sheep. MATERIALS AND METHODS: A total of 50 pooled milk samples were collected from ewes with subclinical mastitis. Milk samples were cultured using standard laboratory techniques, and multidrug-resistant bacterial strains were determined using the Kirby-Bauer disk diffusion method. The MIC and MBC of ZnO-NPs were determined against isolated multidrug-resistant S. aureus and E. coli strains using microwell dilution method. RESULTS: A total of 43 different bacterial isolates were recovered from milk samples of ewes affected with subclinical mastitis. Isolated strains of S. aureus and E. coli were found resistant to three or more common antibacterial agents and were used to determine the MIC and MBC of ZnO-NPs. The MIC and MBC values of ZnO-NPs were significantly lower for S. aureus than that for E. coli. The MIC and MBC of ZnO-NPs against S. aureus were 3.9 µg/ml and 7.81 µg/ml, respectively, while for E. coli, the MIC and MBC of ZnO-NPs were 31.25 µg/ml and 62.5 µg/ml, respectively. CONCLUSION: Results of this study indicate the potential antibacterial effects of ZnO-NPs against multidrug-resistant S. aureus and E. coli isolated from ovine subclinical mastitis at concentrations of 3.9 µg/ml and 31.25 µg/ml, respectively.

15.
Photodiagnosis Photodyn Ther ; 18: 111-118, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28232076

RESUMO

BACKGROUND: Iron oxide (Fe3O4) nanoparticles (IO-NP) were recently employed in medical applications as a diagnostic tool and drug carrier. Photofrin (PF) is a photosensitizer that clinically is used in Photodynamic therapy (PDT). STUDY DESIGN: The photosensitivity of PF and Rose Bengal (RB) mixed with (IO-NP) on red blood cells (RBCs) lysis was investigated. Second, Photohemolysis for post-irradiation (delayed) and during irradiation (continuous) with PF, RB and IO-NP combinations at different concentrations was investigated. Third, the photohemolysis rate, relative lysis steepness and power-concentration dependant parameter were evaluated by modeling and fitting the data using Gompertz function and power law. METHODS: RBCs were isolated from healthy male human volunteer. Washed cells (7.86×106 cells/mm3) were incubated with PF only or with IO-NP for 45min at 37°C then irradiated to a range of temperatures (4-41°C). CPH results were recorded and evaluated using Gompertz function. RESULTS: The relative steepness of the photohemolysis curves was approximately independent on light dose for delayed irradiation. The presence of IO-NP increases the rupturing time for 50% of the RBCs. Photohemolysis rate for delayed irradiation using the power law, led to 1.7 and 2.3 power dependence, respectively, for PF only and PF mixed with IO-NP. The power dependence of continuous irradiation measurements showed inverse proportionality for different concentrations of IO-NP combined with 2µg/ml PF concentration and 1.5µg/ml for RB concentration. CONCLUSION: Photosensitization of RBC with PF or RB mixed with IO-NP inhibited rupturing erythrocyte membrane and therefore a consideration should be taken against their combination in clinical applications.


Assuntos
Dextranos/administração & dosagem , Éter de Diematoporfirina/administração & dosagem , Eritrócitos/efeitos dos fármacos , Eritrócitos/efeitos da radiação , Hemólise/efeitos dos fármacos , Hemólise/efeitos da radiação , Nanopartículas de Magnetita/administração & dosagem , Fotoquimioterapia/métodos , Rosa Bengala/administração & dosagem , Adulto , Células Cultivadas , Relação Dose-Resposta a Droga , Relação Dose-Resposta à Radiação , Combinação de Medicamentos , Eritrócitos/fisiologia , Hemólise/fisiologia , Humanos , Masculino , Nanocápsulas/administração & dosagem , Fármacos Fotossensibilizantes/administração & dosagem
16.
Electrophoresis ; 37(3): 529-35, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26534833

RESUMO

PDMS and PMMA are two of the most used polymers in the fabrication of lab-on-chip or microfluidic devices. In order to use these polymers in biological applications, it is sometimes essential to be able to bind biomolecules such as proteins and DNA to the surface of these materials. In this work, we have evaluated a number of processes that have been developed to bind protein to PDMS surfaces which include passive adsorption, passive adsorption with glutaraldehyde cross-linking, (3-aminopropyl) triethoxysilane functionalization followed by glutaraldehyde or 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride cross-linkers. It has been shown that the latter technique--using 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride--results in more than twice the bonding of protein to the surface of PDMS microchannels than proteins binding passively. We have also evaluated a few techniques that have been tested for the functionalization of PMMA microchannels where we have found that the use of polyethyleneimine (PEI) has led to the strongest protein-PMMA microchannel bond. We finally demonstrated the effect of PDMS curing methodology on protein adsorption to its surface, and showed that increased curing time is the factor that reduces passive adsorption the most.


Assuntos
Dimetilpolisiloxanos/química , Proteínas Imobilizadas/química , Técnicas Analíticas Microfluídicas/instrumentação , Polimetil Metacrilato/química , Técnicas Analíticas Microfluídicas/métodos , Propriedades de Superfície
17.
Cytotechnology ; 67(3): 427-35, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-24643389

RESUMO

Metal oxide nanoparticles have been suggested as good candidates for the development of antibacterial agents. Cerium oxide (CeO2) and iron oxide (Fe2O3) nanoparticles have been utilized in a number of biomedical applications. Here, the antibacterial activity of CeO2 and Fe2O3 nanoparticles were evaluated on a panel of gram positive and gram negative bacteria in both the planktonic and biofilm cultures. Additionally, the effect of combining CeO2 and Fe2O3 nanoparticles with the broad spectrum antibiotic ciprofloxacin on tested bacteria was investigated. Thus, minimum inhibitory concentrations (MICs) of CeO2 and Fe2O3 nanoparticles that are required to inhibit bacterial planktonic growth and bacterial biofilm, were evaluated, and were compared to the MICs of the broad spectrum antibiotic ciprofloxacin alone or in the presence of CeO2 and Fe2O3 nanoparticles. Results of this study show that both CeO2 and Fe2O3 nanoparticles fail to inhibit bacterial growth and biofilm biomass for all the bacterial strains tested. Moreover, adding CeO2 or Fe2O3 nanoparticles to the broad spectrum antibiotic ciprofloxacin almost abolished its antibacterial activity. Results of this study suggest that CeO2 and Fe2O3 nanoparticles are not good candidates as antibacterial agents, and they could interfere with the activity of important antibiotics.

18.
Int J Mol Sci ; 14(11): 21266-305, 2013 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-24232575

RESUMO

Due to finite size effects, such as the high surface-to-volume ratio and different crystal structures, magnetic nanoparticles are found to exhibit interesting and considerably different magnetic properties than those found in their corresponding bulk materials. These nanoparticles can be synthesized in several ways (e.g., chemical and physical) with controllable sizes enabling their comparison to biological organisms from cells (10-100 µm), viruses, genes, down to proteins (3-50 nm). The optimization of the nanoparticles' size, size distribution, agglomeration, coating, and shapes along with their unique magnetic properties prompted the application of nanoparticles of this type in diverse fields. Biomedicine is one of these fields where intensive research is currently being conducted. In this review, we will discuss the magnetic properties of nanoparticles which are directly related to their applications in biomedicine. We will focus mainly on surface effects and ferrite nanoparticles, and on one diagnostic application of magnetic nanoparticles as magnetic resonance imaging contrast agents.


Assuntos
Meios de Contraste , Imageamento por Ressonância Magnética , Nanopartículas de Magnetita , Anisotropia , Meios de Contraste/química , Compostos Férricos/química , Humanos , Nanopartículas de Magnetita/química , Nanopartículas de Magnetita/uso terapêutico , Tamanho da Partícula , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...