Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Public Health ; 11: 1272787, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38089022

RESUMO

The Hyperledger Fabric (HF) framework is widely studied for securing electronic health records (EHRs) in the healthcare sector. Despite the various cross-domain blockchain technology (BCT) applications, little is known about the role of the HF framework in healthcare. The purpose of the systematic literature review (SLR) is to review the existing literature on the HF framework and its applications in healthcare. This SLR includes literature published between January 2015 and March 2023 in the ACM digital library, IEEE Xplore, SCOPUS, Springer, PubMed, and Google Scholar databases. Following the inclusion and exclusion criteria, a total of 57 articles emerged as eligible for this SLR. The HF framework was found to be useful in securing health records coming from the Internet of Medical Things (IoMT) and many other devices. The main causes behind using the HF framework were identified as privacy and security, integrity, traceability, and availability of health records. Additionally, storage issues with transactional data over the blockchain are reduced by the use of the HF framework. This SLR also highlights potential future research trends to ensure the high-level security of health records.


Assuntos
Blockchain , Registros Eletrônicos de Saúde , Atenção à Saúde , Privacidade , Tecnologia
2.
Front Public Health ; 10: 862497, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35493354

RESUMO

Background and Objective: Viral hepatitis is a major public health concern on a global scale. It predominantly affects the world's least developed countries. The most endemic regions are resource constrained, with a low human development index. Chronic hepatitis can lead to cirrhosis, liver failure, cancer and eventually death. Early diagnosis and treatment of hepatitis infection can help to reduce disease burden and transmission to those at risk of infection or reinfection. Screening is critical for meeting the WHO's 2030 targets. Consequently, automated systems for the reliable prediction of hepatitis illness. When applied to the prediction of hepatitis using imbalanced datasets from testing, machine learning (ML) classifiers and known methodologies for encoding categorical data have demonstrated a wide range of unexpected results. Early research also made use of an artificial neural network to identify features without first gaining a thorough understanding of the sequence data. Methods: To help in accurate binary classification of diagnosis (survivability or mortality) in patients with severe hepatitis, this paper suggests a deep learning-based decision support system (DSS) that makes use of bidirectional long/short-term memory (BiLSTM). Balanced data was utilized to predict hepatitis using the BiLSTM model. Results: In contrast to previous investigations, the trial results of this suggested model were encouraging: 95.08% accuracy, 94% precision, 93% recall, and a 93% F1-score. Conclusions: In the field of hepatitis detection, the use of a BiLSTM model for classification is better than current methods by a significant margin in terms of improved accuracy.


Assuntos
Algoritmos , Hepatite , Humanos , Aprendizado de Máquina , Redes Neurais de Computação , Saúde Pública
3.
Sensors (Basel) ; 22(7)2022 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-35408147

RESUMO

This work investigates sensor fault diagnostics and fault-tolerant control for a voltage source converter based microgrid (model) using a sliding-mode observer. It aims to provide a diagnosis of multiple faults (i.e., magnitude, phase, and harmonics) occurring simultaneously or individually in current/potential transformers. A modified algorithm based on convex optimization is used to determine the gains of the sliding-mode observer, which utilizes the feasibility optimization or trace minimization of a Ricatti equation-based modification of H-Infinity (H∞) constrained linear matrix inequalities. The fault and disturbance estimation method is modified and improved with some corrections in previous works. The stability and finite-time reachability of the observers are also presented for the considered faulty and perturbed microgrid system. A proportional-integral (PI) based control is utilized for the conventional regulations required for frequency and voltage sags occurring in a microgrid. However, the same control block features fault-tolerant control (FTC) functionality. It is attained by incorporating a sliding-mode observer to reconstruct the faults of sensors (transformers), which are fed to the control block after correction. Simulation-based analysis is performed by presenting the results of state/output estimation, state/output estimation errors, fault reconstruction, estimated disturbances, and fault-tolerant control performance. Simulations are performed for sinusoidal, constant, linearly increasing, intermittent, sawtooth, and random sort of often occurring sensor faults. However, this paper includes results for the sinusoidal nature voltage/current sensor (transformer) fault and a linearly increasing type of fault, whereas the remaining results are part of the supplementary data file. The comparison analysis is performed in terms of observer gains being estimated by previously used techniques as compared to the proposed modified approach. It also includes the comparison of the voltage-frequency control implemented with and without the incorporation of the used observer based fault estimation and corrections, in the control block. The faults here are considered for voltage/current sensor transformers, but the approach works for a wide range of sensors.

4.
Front Public Health ; 10: 855254, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35321193

RESUMO

Deep neural networks have made tremendous strides in the categorization of facial photos in the last several years. Due to the complexity of features, the enormous size of the picture/frame, and the severe inhomogeneity of image data, efficient face image classification using deep convolutional neural networks remains a challenge. Therefore, as data volumes continue to grow, the effective categorization of face photos in a mobile context utilizing advanced deep learning techniques is becoming increasingly important. In the recent past, some Deep Learning (DL) approaches for learning to identify face images have been designed; many of them use convolutional neural networks (CNNs). To address the problem of face mask recognition in facial images, we propose to use a Depthwise Separable Convolution Neural Network based on MobileNet (DWS-based MobileNet). The proposed network utilizes depth-wise separable convolution layers instead of 2D convolution layers. With limited datasets, the DWS-based MobileNet performs exceptionally well. DWS-based MobileNet decreases the number of trainable parameters while enhancing learning performance by adopting a lightweight network. Our technique outperformed the existing state of the art when tested on benchmark datasets. When compared to Full Convolution MobileNet and baseline methods, the results of this study reveal that adopting Depthwise Separable Convolution-based MobileNet significantly improves performance (Acc. = 93.14, Pre. = 92, recall = 92, F-score = 92).


Assuntos
COVID-19 , Humanos , Redes Neurais de Computação , Pandemias
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...