Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant Cell ; 16(8): 2176-91, 2004 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-15269333

RESUMO

Worldwide more than 400 plant species are now known that hyperaccumulate various trace metals (Cd, Co, Cu, Mn, Ni, and Zn), metalloids (As) and nonmetals (Se) in their shoots. Of these, almost one-quarter are Brassicaceae family members, including numerous Thlaspi species that hyperaccumulate Ni up to 3% of there shoot dry weight. We observed that concentrations of glutathione, Cys, and O-acetyl-l-serine (OAS), in shoot tissue, are strongly correlated with the ability to hyperaccumulate Ni in various Thlaspi hyperaccumulators collected from serpentine soils, including Thlaspi goesingense, T. oxyceras, and T. rosulare, and nonaccumulator relatives, including T. perfoliatum, T. arvense, and Arabidopsis thaliana. Further analysis of the Austrian Ni hyperaccumulator T. goesingense revealed that the high concentrations of OAS, Cys, and GSH observed in this hyperaccumulator coincide with constitutively high activity of both serine acetyltransferase (SAT) and glutathione reductase. SAT catalyzes the acetylation of l-Ser to produce OAS, which acts as both a key positive regulator of sulfur assimilation and forms the carbon skeleton for Cys biosynthesis. These changes in Cys and GSH metabolism also coincide with the ability of T. goesingense to both hyperaccumulate Ni and resist its damaging oxidative effects. Overproduction of T. goesingense SAT in the nonaccumulator Brassicaceae family member Arabidopsis was found to cause accumulation of OAS, Cys, and glutathione, mimicking the biochemical changes observed in the Ni hyperaccumulators. In these transgenic Arabidopsis, glutathione concentrations strongly correlate with increased resistance to both the growth inhibitory and oxidative stress induced effects of Ni. Taken together, such evidence supports our conclusion that elevated GSH concentrations, driven by constitutively elevated SAT activity, are involved in conferring tolerance to Ni-induced oxidative stress in Thlaspi Ni hyperaccumulators.


Assuntos
Glutationa/biossíntese , Níquel/metabolismo , Serina/análogos & derivados , Thlaspi/metabolismo , Acetiltransferases/metabolismo , Arabidopsis/anatomia & histologia , Arabidopsis/fisiologia , Cisteína/metabolismo , Ativação Enzimática , Glutationa Redutase/metabolismo , Peroxidação de Lipídeos , Dados de Sequência Molecular , Níquel/toxicidade , Estresse Oxidativo , Brotos de Planta/metabolismo , Plantas Geneticamente Modificadas , Espécies Reativas de Oxigênio/metabolismo , Serina/metabolismo , Serina O-Acetiltransferase , Enxofre/metabolismo , Substâncias Reativas com Ácido Tiobarbitúrico/metabolismo , Thlaspi/anatomia & histologia
2.
BMC Plant Biol ; 4: 1, 2004 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-15005814

RESUMO

BACKGROUND: It has become increasingly evident that dietary Se plays a significant role in reducing the incidence of lung, colorectal and prostate cancer in humans. Different forms of Se vary in their chemopreventative efficacy, with Se-methylselenocysteine being one of the most potent. Interestingly, the Se accumulating plant Astragalus bisulcatus (Two-grooved poison vetch) contains up to 0.6% of its shoot dry weight as Se-methylselenocysteine. The ability of this Se accumulator to biosynthesize Se-methylselenocysteine provides a critical metabolic shunt that prevents selenocysteine and selenomethionine from entering the protein biosynthetic machinery. Such a metabolic shunt has been proposed to be vital for Se tolerance in A. bisulcatus. Utilization of this mechanism in other plants may provide a possible avenue for the genetic engineering of Se tolerance in plants ideally suited for the phytoremediation of Se contaminated land. Here, we describe the overexpression of a selenocysteine methyltransferase from A. bisulcatus to engineer Se-methylselenocysteine metabolism in the Se non-accumulator Arabidopsis thaliana (Thale cress). RESULTS: By over producing the A. bisulcatus enzyme selenocysteine methyltransferase in A. thaliana, we have introduced a novel biosynthetic ability that allows the non-accumulator to accumulate Se-methylselenocysteine and gamma-glutamylmethylselenocysteine in shoots. The biosynthesis of Se-methylselenocysteine in A. thaliana also confers significantly increased selenite tolerance and foliar Se accumulation. CONCLUSION: These results demonstrate the feasibility of developing transgenic plant-based production of Se-methylselenocysteine, as well as bioengineering selenite resistance in plants. Selenite resistance is the first step in engineering plants that are resistant to selenate, the predominant form of Se in the environment.


Assuntos
Arabidopsis/genética , Astrágalo/enzimologia , Cisteína/análogos & derivados , Cisteína/biossíntese , Metiltransferases/genética , Arabidopsis/efeitos dos fármacos , Arabidopsis/metabolismo , Cromatografia Líquida de Alta Pressão , Regulação Enzimológica da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Espectrometria de Massas/métodos , Metiltransferases/metabolismo , Compostos Organosselênicos , Brotos de Planta/efeitos dos fármacos , Brotos de Planta/genética , Brotos de Planta/metabolismo , Plantas Geneticamente Modificadas , Selênio/análise , Selênio/farmacologia , Selenocisteína/análogos & derivados , Selenito de Sódio/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...