Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 882: 163583, 2023 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-37086986

RESUMO

After drainage for forestry and agriculture, peat extraction is one of the most important causes of peatland degradation. When peat extraction is ceased, multiple after-use options exist, including abandonment, restoration, and replacement (e.g., forestry and agricultural use). However, there is a lack of a global synthesis of after-use research. Through a systematic review of 356 peer-reviewed scientific articles, we address this research gap and examine (1) what after-use options have been studied, (2) what the studied and recognized impacts of the after-use options are, and (3) what one can learn in terms of best practices and research gaps. The research has concentrated on the impacts of restoration (N = 162), abandonment (N = 72), and replacement (N = 94), the latter of which consists of afforestation (N = 46), cultivation (N = 34) and creation of water bodies (N = 14). The studies on abandonment, restoration, and creation of water bodies have focused mostly on analyzing vegetation and greenhouse gas (GHG) fluxes, while the studies assessing afforestation and cultivation sites mostly evaluate the provisioning ecosystem services. The studies show that active restoration measures speed-up vegetation recolonization on bare peat areas, reduce GHG emissions and decrease negative impacts on water systems. The most notable research gap is the lack of studies comparing the environmental and social impacts of the after-use options. Additionally, there is a lack of studies focusing on social impacts and downstream hydrology, as well as long-term monitoring of GHG fluxes. Based on the reviewed studies, a comparison of the impacts of the after-use options is not straightforward. We emphasize a need for comparative empirical research in the extracted sites with a broad socio-ecological and geographical context.


Assuntos
Gases de Efeito Estufa , Solo , Ecossistema , Mudança Social , Hidrologia , Biodiversidade
2.
Ecol Appl ; 33(5): e2856, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37087599

RESUMO

Browning of surface waters, also known as brownification, is a process of decreasing water transparency, particularly in boreal lakes surrounded by intensively managed forests and wetlands. In this paper, we review the ecological consequences and ecosystem-based management (EBM) of browning through a systematic review approach and adopt an interdisciplinary approach to formulating new governance of this complex phenomenon. To understand the effects of browning on the recreational value of freshwaters, we present primary survey data on public perceptions of recreational fishing tourists on water quality in Finland. We identify a need to develop EBM beyond the EU's Water Framework Directive (WFD) to fully account for the extensive implications of browning. We also highlight the need for a better understanding of the within-lake microbial processes to estimate the browning-associated changes in the greenhouse gas balance of lakes. Tourist perceptions of the quality of waterbodies in Finland were largely in agreement with the general proportion of waterbodies classified in a good or excellent ecological status class, but these perceptions may be detached from biological quality assessment criteria. Consequently, we suggest that the EBM of inland waters should improve the utilization of information on not only biogeochemical processes but also users' perspectives on aquatic ecosystems beyond the EU WFD.


Assuntos
Ecossistema , Lagos , Opinião Pública , Finlândia , Qualidade da Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA