Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Pharmacol Res ; 204: 107170, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38614374

RESUMO

To determine the effects of SARS-CoV-2 infection on cellular metabolism, we conducted an exhaustive survey of the cellular metabolic pathways modulated by SARS-CoV-2 infection and confirmed their importance for SARS-CoV-2 propagation by cataloging the effects of specific pathway inhibitors. This revealed that SARS-CoV-2 strongly inhibits mitochondrial oxidative phosphorylation (OXPHOS) resulting in increased mitochondrial reactive oxygen species (mROS) production. The elevated mROS stabilizes HIF-1α which redirects carbon molecules from mitochondrial oxidation through glycolysis and the pentose phosphate pathway (PPP) to provide substrates for viral biogenesis. mROS also induces the release of mitochondrial DNA (mtDNA) which activates innate immunity. The restructuring of cellular energy metabolism is mediated in part by SARS-CoV-2 Orf8 and Orf10 whose expression restructures nuclear DNA (nDNA) and mtDNA OXPHOS gene expression. These viral proteins likely alter the epigenome, either by directly altering histone modifications or by modulating mitochondrial metabolite substrates of epigenome modification enzymes, potentially silencing OXPHOS gene expression and contributing to long-COVID.

2.
Nat Commun ; 8: 14781, 2017 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-28290449

RESUMO

Positive-sense RNA viruses pose increasing health and economic concerns worldwide. Our limited understanding of how these viruses interact with their host and how these processes lead to virulence and disease seriously hampers the development of anti-viral strategies. Here, we demonstrate the tracking of (+) and (-) sense viral RNA at single-cell resolution within complex subsets of the human and murine immune system in different mouse models. Our results provide insights into how a prototypic flavivirus, yellow fever virus (YFV-17D), differentially interacts with murine and human hematopoietic cells in these mouse models and how these dynamics influence distinct outcomes of infection. We detect (-) YFV-17D RNA in specific secondary lymphoid compartments and cell subsets not previously recognized as permissive for YFV replication, and we highlight potential virus-host interaction events that could be pivotal in regulating flavivirus virulence and attenuation.


Assuntos
Células-Tronco Hematopoéticas/metabolismo , RNA Viral/metabolismo , Febre Amarela/metabolismo , Vírus da Febre Amarela/genética , Animais , Linfócitos T CD8-Positivos/imunologia , Citocinas/imunologia , Feminino , Flavivirus/genética , Citometria de Fluxo , Células HEK293 , Transplante de Células-Tronco Hematopoéticas , Células-Tronco Hematopoéticas/imunologia , Humanos , Masculino , Camundongos , RNA Viral/imunologia , Análise de Célula Única , Especificidade da Espécie , Transplante Heterólogo , Febre Amarela/imunologia , Febre Amarela/virologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...