Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Opt Express ; 31(11): 17424-17436, 2023 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-37381477

RESUMO

We design and fabricate a grating coupler for interfacing suspended silicon photonic membranes with free-space optics while being compatible with single-step lithography and etching in 220 nm silicon device layers. The grating coupler design simultaneously and explicitly targets both high transmission into a silicon waveguide and low reflection back into the waveguide by means of a combination of a two-dimensional shape-optimization step followed by a three-dimensional parameterized extrusion. The designed coupler has a transmission of -6.6 dB (21.8 %), a 3 dB bandwidth of 75 nm, and a reflection of -27 dB (0.2 %). We experimentally validate the design by fabricating and optically characterizing a set of devices that allow the subtraction of all other sources of transmission losses as well as the inference of back-reflections from Fabry-Pérot fringes, and we measure a transmission of 19 % ± 2 %, a bandwidth of 65 nm and a reflection of 1.0 % ± 0.8 %.

2.
Phys Rev Lett ; 130(10): 106903, 2023 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-36962028

RESUMO

Nanophononics has the potential for information transfer, in an analogous manner to its photonic and electronic counterparts. The adoption of phononic systems has been limited, due to difficulties associated with the generation, manipulation, and detection of phonons, especially at GHz frequencies. Existing techniques often require piezoelectric materials with an external radiofrequency excitation that are not readily integrated into existing CMOS infrastructures, while nonpiezoelectric demonstrations have been inefficient. In this Letter, we explore the optomechanical generation of coherent phonons in a suspended 2D silicon phononic crystal cavity with a guided mode around 6.8 GHz. By incorporating an air-slot into this cavity, we turn the phononic waveguide into an optomechanical platform that exploits localized photonic modes resulting from inherent fabrication imperfections for the transduction of mechanics. Such a platform exhibits very fine control of phonons using light, and is capable of coherent self-sustained phonon generation around 6.8 GHz, operating at room temperature. The ability to generate high frequency coherent mechanical vibrations within such a simple 2D CMOS-compatible system could be a first step towards the development of sources in phononic circuitry and the coherent manipulation of other solid-state properties.

3.
Nat Commun ; 13(1): 6281, 2022 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-36271087

RESUMO

Nanotechnology enables in principle a precise mapping from design to device but relied so far on human intuition and simple optimizations. In nanophotonics, a central question is how to make devices in which the light-matter interaction strength is limited only by materials and nanofabrication. Here, we integrate measured fabrication constraints into topology optimization, aiming for the strongest possible light-matter interaction in a compact silicon membrane, demonstrating an unprecedented photonic nanocavity with a mode volume of V ~ 3 × 10-4 λ3, quality factor Q ~ 1100, and footprint 4 λ2 for telecom photons with a λ ~ 1550 nm wavelength. We fabricate the cavity, which confines photons inside 8 nm silicon bridges with ultra-high aspect ratios of 30 and use near-field optical measurements to perform the first experimental demonstration of photon confinement to a single hotspot well below the diffraction limit in dielectrics. Our framework intertwines topology optimization with fabrication and thereby initiates a new paradigm of high-performance additive and subtractive manufacturing.

4.
Opt Express ; 30(9): 15458-15469, 2022 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-35473265

RESUMO

We present a theoretical study of dielectric bowtie cavities and show that they are governed by two essentially different confinement regimes. The first is confinement inside the bulk dielectric and the second is a local lightning-rod regime where the field is locally enhanced at sharp corners and may yield a vanishing mode volume without necessarily enhancing the mode inside the bulk dielectric. We show that while the bulk regime is reminiscent of the confinement in conventional nanocavities, the most commonly used definition of the mode volume gauges in fact the lightning-rod effect when applied to ultra-compact cavities, such as bowties. Distinguishing between these two regimes will be crucial for future research on nanocavities, and our insights show how to obtain strongly enhanced light-matter interaction over large bandwidths.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...