Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Prep Biochem Biotechnol ; 53(8): 906-913, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36579491

RESUMO

Fructooligosaccharides (FOS) are prebiotics of interest to the food industry. These compounds can be produced through the transfructosylation reaction by the enzyme fructofuranosidase. This enzyme is widely produced by fungi in a medium rich in sugar. Therefore, in this work, the main objectives were production, purification, biochemical characterization of a novel fructofuranosidase enzyme by Penicillium citreonigrum URM 4459 and synthesize and evaluate the antibacterial potential of fructooligosaccharides. With respect to sucrose hydrolysis, the optimal pH was 5.5, the apparent Km for purified FFase was 3.8 mM, the molecular mass was 43.0 kDa, estimated by gel filtration on Superdex increase G75 controlled by AKTA Avant 25 and confirmed by 10% SDS-PAGE under denaturing condition. Also, the isoelectric point was 4.9. The fractions obtained with enzymatic activities, both stable at acidic pH and high temperatures, as well as being able to produce FOS. Regarding antibacterial activity, the FOS produced in this study showed better results than commercial FOS and other carbon sources. Thus, this work presents relevant data for the use of P. citreonigum to produce fructofuranosidase and consequently FOS and can be used in the food and pharmaceutical industry.


Assuntos
Penicillium , beta-Frutofuranosidase , Oligossacarídeos , Concentração de Íons de Hidrogênio
2.
An Acad Bras Cienc ; 94(4): e20201914, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36102391

RESUMO

Fibrinolytic enzymes are considered promising alternative in the treatment of cardiovascular diseases by preventing fibrin clots. A protease from Mucor subtilissimus UCP 1262 was obtained by solid state fermentation and purified by ion exchange chromatography. The purified extract was administered at an acute dose of 2000 mg/mL to evaluate its toxic effects to the lungs of mice. After 14 days of treatment, a histomorphometric study was performed by the type 1 and 2 pneumocyte count and the evaluation of the lung area. As result, the experimental group showed a significant decrease of type 2 pneumocyte and although a decrease in the alveolar area was observed in relation to the control group, no significant pulmonary toxicity, emphysema, and fibrosis characteristics were detected. The in vitro tests suggest possible clinical applications for the enzyme.


Assuntos
Pulmão , Peptídeo Hidrolases , Animais , Camundongos , Peptídeo Hidrolases/química
3.
An Acad Bras Cienc ; 93(suppl 3): e20200867, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34586176

RESUMO

Solid state fermentation is a promising technology largely used in biotechnology process and is a suitable strategy for producing low-cost enzymatic products. At the present study, a novel enzyme obtained through solid state fermentation using Aspergillus sydowii was herein purified and characterized. The fermentations used coffee ground residue as substrate and the crude enzyme was submitted through further purification steps of: acetonic precipitation, DEAE-Sephadex and Superdex G-75 column. Both crude and purified enzymes were submitted to biochemical characterization of their thermostability, optimal temperature and pH, effects of inhibitors and metal ions. A purified protease was obtained with yield of 5.9-fold and 53% recovery, with maximal proteolytic activity of 352.0 U/mL. SDS-PAGE revealed a band of protein at 47.0 kDa. The enzyme activity was abolished in the presence of phenyl-methyl sulfonyl fluoride and partially inhibited against Triton X-100 (78.0%). The optimal activity was found in pH 8.0 at 45°C of temperature. Besides, the enzyme showed stability between 35°C and 50°C. It was possible to determine appropriate conditions to the obtainment of thermostable proteases with biotechnological interest associated with a method that concomitantly shows excellent production levels and recovery waste raw material in a very profitable process.


Assuntos
Café , Peptídeo Hidrolases , Aspergillus , Fermentação , Concentração de Íons de Hidrogênio , Peso Molecular , Temperatura
4.
Bioelectromagnetics ; 41(2): 113-120, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31872912

RESUMO

Ultrasound has been applied for varied purposes as it provides additional mechanical energy to a system, and is still profitable and straightforward, which are advantages for industrial applications. In this work, ultrasonic treatments were applied to purified collagenase fractions from a fermented extract by Aspergillus terreus UCP 1276 aiming to evaluate the potential effect on collagen hydrolysis. The physical agent was evaluated as an inductor of collagen degradation and consequently as a producer of peptides with anticoagulant activity. The sodium dodecyl sulphate-polyacrylamide gel electrophoresis analyses were also carried out to compare the hydrolysis techniques. The ultrasound (40 kHz, 47.4 W/L) processing was conducted under the same conditions of pH and temperature at different times. The ultrasound-assisted reaction was accelerated in relation to conventional processing. Collagenolytic activity was enhanced and tested in the presence of phenylmethanesulfonyl fluoride inhibitor. Underexposure, the activity was enhanced, reaching more than 72.0% of improvement in relation to the non-exposed enzyme. A period of 30 min of incubation under ultrasound exposure was enough to efficiently produce peptides with biological activity, including anticoagulation and effect on prothrombin time at about 60%. The results indicate that low-frequency ultrasound is an enzymatic inducer with likely commercial applicability accelerating the enzymatic reaction. Bioelectromagnetics. 2020;41:113-120. © 2019 Bioelectromagnetics Society.


Assuntos
Anticoagulantes/farmacologia , Aspergillus/enzimologia , Colágeno/química , Colagenases/metabolismo , Peptídeos/química , Anticoagulantes/química , Catálise , Colágeno/metabolismo , Colagenases/química , Colagenases/isolamento & purificação , Eletroforese em Gel de Poliacrilamida , Fermentação , Humanos , Hidrólise , Peptídeos/farmacologia , Fluoreto de Fenilmetilsulfonil/química , Fluoreto de Fenilmetilsulfonil/farmacologia , Inibidores de Proteases/química , Inibidores de Proteases/farmacologia , Hidrolisados de Proteína/química , Ultrassom/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...