Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chem Biodivers ; 21(4): e202301758, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38241641

RESUMO

Propolis was collected from honeybee hives in three geographically distinct Algerian climates and extracts were characterized for composition and bioactivity. Bees were identified as native subspecies using an in-silico DraI mtDNA COI-COII test. Over 20 compounds were identified in extracts by LC-MS. Extracts from the Medea region were more enriched in phenolic content (302±28 mg GAE/g of dry extract) than those from Annaba and Ghardaia regions. Annaba extracts had the highest flavonoid content (1870±385 mg QCE/g of dry extract). Medea extracts presented the highest free-radical scavenging activity (IC50=13.5 µg/mL) using the DPPH radical assay while Ghardaia extracts from the desert region were weak (IC50>100 µg/mL). Antioxidant activities measured using AAPH oxidation of linoleic acid were similar in all extracts with IC50 values ranging from 2.9 to 4.9 µg/mL. All extracts were cytotoxic (MTT assay) and proapoptotic (Annexin-V) against human leukemia cell lines in the low µg/mL range, although the Annaba extract was less active against the Reh cell line. Extracts inhibited cellular 5-lipoxygenase product biosynthesis with IC50 values ranging from 0.6 to 3.2 µg/mL. Overall, examined propolis extracts exhibited significant biological activity that warrant further characterization in cellular and in vivo models.


Assuntos
Antioxidantes , Própole , Animais , Humanos , Antioxidantes/farmacologia , Antioxidantes/química , Própole/farmacologia , Própole/química , Araquidonato 5-Lipoxigenase , Extratos Vegetais/química , Fenóis/farmacologia , Flavonoides/farmacologia
2.
Sci Rep ; 14(1): 1726, 2024 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-38242935

RESUMO

USDA-ARS Bee Research Laboratory received symptomatic honey bee (Apis mellifera L.) samples across the United States for disease diagnosis. Here, we present a retrospective study and cartography of ectoparasite Varroa destructor and intracellular microsporidia parasite Nosema spp. These two major parasites were identified in the diseased honey bee samples between 2015 and 2022. Varroa infestation level (VIL) was examined by a wash technique (Mites/100 bees) and calculated as a percentage, while Nosema infection was quantified by microscopical spore count (Million Spores/Bee). Data were analyzed by month, year, state, and by nine geographical climate regions described in the U.S. Of adult bee samples (n = 4039) that were analyzed for Varroa mite infestation, the overall VIL in the U.S. ranged between 0.4 and 30.85%, with an overall national VIL and Varroa prevalence of 8.21% and 85.14%, respectively. Overall monthly data showed VIL constantly exceeded the critical level of 4% except from June to September and reached a maximum of 15% in January and December. Nationwide, VIL significantly (p < 0.001) increased from 2015 to 2018 (1.1-4.7%), plateaued from 2018 to 2021 (4.7-4.5%), followed by a significant decrease in 2022 (3.6%). Significant VIL differences (p < 0.001) were recorded among climate regions, with the highest mite infestation levels in the Upper Midwest region (13.9%) and the lowest in the West region (5.1%). Of adult bee samples (n = 2,994) that were analyzed for Nosema infection, Nosema spore count ranged between (1-16.8) million spores per bee among states, with a national average of 6.8 and a prevalence of 99.7%. The lowest and highest Nosema loads were respectively recorded in the South region (3.1) and Upper Midwest (10.5), a significant difference (p < 0.001). No statistical differences were recorded among the six other climate regions. Overall, VIL and Nosema infection correlated significantly (p < 0.001) with a regression coefficient of (R2 = 0.6). Our data, which originated from ailing bee colonies, showed significantly higher rates of maladies compared to data from healthy colonies obtained by the USDA-APHIS National Honey Bee Survey, demonstrating the role of bee diseases caused by Varroa mite and Nosema in honey bee population declines.


Assuntos
Nosema , Escabiose , Varroidae , Abelhas , Animais , Estudos Retrospectivos , Prevalência
3.
PLoS One ; 18(5): e0285167, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37134100

RESUMO

Pollinator health risks from long-lasting neonicotinoid insecticides like imidacloprid has primarily focused on commercially managed, cavity-nesting bees in the genera Apis, Bombus, and Osmia. We expand these assessments to include 12 species of native and non-native crop pollinators of differing levels of body size, sociality, and floral specialization. Bees were collected throughout 2016 and 2017 from flowering blueberry, squash, pumpkin, sunflower and okra in south Mississippi, USA. Within 30-60 minutes of capture, bees were installed in bioassay cages made from transparent plastic cups and dark amber jars. Bees were fed via dental wicks saturated with 27% (1.25 M) sugar syrup containing a realistic range of sublethal concentrations of imidacloprid (0, 5, 20, or 100 ppb) that are often found in nectar. Bees displayed no visible tremors or convulsions except for a small sweat bee, Halictus ligatus, and only at 100ppb syrup. Imidacloprid shortened the captive longevities of the solitary bees. Tolerant bee species lived ~10 to 12 days in the bioassays and included two social and one solitary species: Halictus ligatus, Apis mellifera and Ptilothrix bombiformis (rose mallow bees), respectively. No other bee species tolerated imidacloprid as well as honey bees did, which exhibited no appreciable mortality and only modest paralysis across concentration. In contrast, native bees either lived shorter lives, experienced longer paralysis, or endured both. Overall, longevity decreased with concentration linearly for social bees and non-linearly for solitary species. The percentage of a bee's captive lifespan spent paralyzed increased logarithmically with concentration for all species, although bumble bees suffered longest. Of greatest concern was comparable debilitation of agriculturally valuable solitary bees at both low and high sublethal rates of imidacloprid.


Assuntos
Inseticidas , Abelhas , Animais , Inseticidas/toxicidade , Imidazóis/toxicidade , Neonicotinoides/toxicidade , Nitrocompostos/toxicidade
4.
Front Physiol ; 14: 1149840, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36994419

RESUMO

Nutritional stress, especially a dearth of pollen, has been linked to honey bee colony losses. Colony-level experiments are critical for understanding the mechanisms by which nutritional stress affects individual honey bee physiology and pushes honey bee colonies to collapse. In this study, we investigated the impact of pollen restriction on key markers of honey bee physiology, main elements of the immune system, and predominant honey bee viruses. To achieve this objective, we uncoupled the effects of behavior, age, and nutritional conditions using a new colony establishment technique designed to control size, demography, and genetic background. Our results showed that the expression of storage proteins, including vitellogenin (vg) and royal jelly major protein 1 (mrjp1), were significantly associated with nursing, pollen ingestion, and older age. On the other hand, genes involved in hormonal regulation including insulin-like peptides (ilp1 and ilp2) and methyl farnesoate epoxidase (mfe), exhibited higher expression levels in young foragers from colonies not experiencing pollen restriction. In contrast, pollen restriction induced higher levels of insulin-like peptides in old nurses. On the other hand, we found a strong effect of behavior on the expression of all immune genes, with higher expression levels in foragers. In contrast, the effects of nutrition and age were significant only the expression of the regulatory gene dorsal. We also found multiple interactions of the experimental variables on viral titers, including higher Deformed wing virus (DWV) titers associated with foraging and age-related decline. In addition, nutrition significantly affected DWV titers in young nurses, with higher titers induced by pollen ingestion. In contrast, higher levels of Black queen cell virus (BQCV) were associated with pollen restriction. Finally, correlation, PCA, and NMDS analyses proved that behavior had had the strongest effect on gene expression and viral titers, followed by age and nutrition. These analyses also support multiple interactions among genes and virus analyzed, including negative correlations between the expression of genes encoding storage proteins associated with pollen ingestion and nursing (vg and mrjp1) with the expression of immune genes and DWV titers. Our results provide new insights into the proximal mechanisms by which nutritional stress is associated with changes in honey bee physiology, immunity, and viral titers.

5.
Sci Rep ; 13(1): 3931, 2023 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-36894585

RESUMO

In this study, we conducted a transcriptional analysis of five honey bee genes to examine their functional involvement vis-à-vis ambient temperatures and exposure to imidacloprid. In a 15-day cage experiment, three cohorts of one-day-old sister bees emerged in incubators, were distributed into cages, and maintained at three different temperatures (26 °C, 32 °C, 38 °C). Each cohort was fed a protein patty and three concentrations of imidacloprid-tainted sugar (0 ppb, 5 ppb and 20 ppb) ad libitum. Honey bee mortality, syrup and patty consumption were monitored daily over 15 days. Bees were sampled every three days for a total of five time points. RT-qPCR was used to longitudinally assess gene regulation of Vg, mrjp1, Rsod, AChE-2 and Trx-1 using RNA extracted from whole bee bodies. Kaplan-Meier models show that bees kept at both non-optimal temperatures (26 °C and 38 °C) were more susceptible to imidacloprid, with significantly higher mortality (P < 0.001 and P < 0.01, respectively) compared to the control. At 32 °C, no differences in mortality (P = 0.3) were recorded among treatments. In both imidacloprid treatment groups and the control, the expression of Vg and mrjp1 was significantly downregulated at 26 °C and 38 °C compared to the optimal temperature of 32 °C, indicating major influence of ambient temperature on the regulation of these genes. Within the ambient temperature groups, both imidacloprid treatments exclusively downregulated Vg and mrjp1 at 26 °C. AChE-2 and the poorly characterized Rsod gene were both consistently upregulated at the highest temperature (38 °C) compared to the ideal temperature (32 °C) in all treatment groups. Trx-1 showed no effect to both temperature and imidacloprid treatments and was regulated in an age-related manner. Overall, our results indicate that ambient temperatures amplify imidacloprid toxicity and affect honey bee gene regulation.


Assuntos
Inseticidas , Abelhas/genética , Animais , Inseticidas/toxicidade , Temperatura , Neonicotinoides/toxicidade , Nitrocompostos/toxicidade
6.
J Adv Res ; 53: 99-114, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-36564001

RESUMO

INTRODUCTION: Honey bees provides valuable pollination services for world food crops and wild flowering plants which are habitats of many animal species and remove carbon dioxide from the atmosphere, a powerful tool in the fight against climate change. Nevertheless, the honey bee population has been declining and the majority of colony losses occur during the winter. OBJECTIVES: The goal of this study was to understand the mechanisms underlying overwinter colony losses and develop novel therapeutic strategies for improving bee health. METHODS: First, pathogen prevalence in overwintering bees were screened between 2015 and 2018. Second, RNA sequencing (RNA-Seq) for transcriptional profiling of overwintering honey bees was conducted and qRT-PCR was performed to confirm the results of the differential expression of selected genes. Lastly, laboratory bioassays were conducted to measure the effects of cold challenges on bee survivorship and stress responses and to assess the effect of a novel medication for alleviating cold stress in honey bees. RESULTS: We identified that sirtuin signaling pathway is the most significantly enriched pathway among the down-regulated differentially expressed genes (DEGs) in overwintering diseased bees. Moreover, we showed that the expression of SIRT1 gene, a major sirtuin that regulates energy and immune metabolism, was significantly downregulated in bees merely exposed to cold challenges, linking cold stress with altered gene expression of SIRT1. Furthermore, we demonstrated that activation of SIRT1 gene expression by SRT1720, an activator of SIRT1 expression, could improve the physiology and extend the lifespan of cold-stressed bees. CONCLUSION: Our study suggests that increased energy consumption of overwintering bees for maintaining hive temperature reduces the allocation of energy toward immune functions, thus making the overwintering bees more susceptible to disease infections and leading to high winter colony losses. The novel information gained from this study provides a promising avenue for the development of therapeutic strategies for mitigating colony losses, both overwinter and annually.


Assuntos
Transdução de Sinais , Sirtuína 1 , Abelhas , Animais , Reação em Cadeia da Polimerase , Suscetibilidade a Doenças , Polinização
7.
Front Cell Infect Microbiol ; 12: 847000, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35372101

RESUMO

The remarkably adaptive mite Varroa destructor is the most important honey bee ectoparasite. Varroa mites are competent vectors of deformed wing virus (DWV), and the Varroa-virus complex is a major determinant of annual honey bee colony mortality and collapse. MicroRNAs (miRNAs) are 22-24 nucleotide non-coding RNAs produced by all plants and animals and some viruses that influence biological processes through post-transcriptional regulation of gene expression. Knowledge of miRNAs and their function in mite biology remains limited. Here we constructed small RNA libraries from male and female V. destructor using Illumina's small RNA-Seq platform. A total of 101,913,208 and 91,904,732 small RNA reads (>18 nucleotides) from male and female mites were analyzed using the miRDeep2 algorithm. A conservative approach predicted 306 miRNAs, 18 of which were upregulated and 13 downregulated in female V. destructor compared with males. Quantitative real-time PCR validated the expression of selected differentially-expressed female Varroa miRNAs. This dataset provides a list of potential miRNA targets involved in regulating vital Varroa biological processes and paves the way for developing strategies to target Varroa and their viruses.


Assuntos
Ácaros e Carrapatos , MicroRNAs , Vírus de RNA , Varroidae , Ácaros e Carrapatos/genética , Animais , Abelhas , Feminino , Masculino , MicroRNAs/genética , Vírus de RNA/genética , Varroidae/genética
8.
Front Genet ; 13: 1092121, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36685818

RESUMO

The genetic diversity of the USA honey bee (Apis mellifera L.) populations was examined through a molecular approach using two mitochondrial DNA (mtDNA) markers. A total of 1,063 samples were analyzed for the mtDNA intergenic region located between the cytochrome c oxidase I and II (COI-COII) and 401 samples were investigated for the NADH dehydrogenase 2 (ND2) coding gene. The samples represented 45 states, the District of Colombia and two territories of the USA. Nationwide, three maternal evolutionary lineages were identified: the North Mediterranean lineage C (93.79%), the West Mediterranean lineage M (3.2%) and the African lineage A (3.01%). A total of 27 haplotypes were identified, 13 of them (95.11%) were already reported and 14 others (4.87%) were found to be novel haplotypes exclusive to the USA. The number of haplotypes per state/territory ranged between two and eight and the haplotype diversity H ranged between 0.236-0.763, with a nationwide haplotype diversity of 0.597. Furthermore, the honey bee populations of the USA were shown to rely heavily (76.64%) on two single haplotypes (C1 = 38.76%, C2j = 37.62%) of the same lineage characterizing A. m. ligustica and A. m. carnica subspecies, respectively. Molecular-variance parsimony in COI-COII and ND2 confirmed this finding and underlined the central and ancestral position of C2d within the C lineage. Moreover, major haplotypes of A. m. mellifera (M3a, M7b, M7c) were recorded in six states (AL, AR, HI, MO, NM and WA). Four classic African haplotypes (A1e, A1v, A4, A4p) were also identified in nine states and Puerto Rico, with higher frequencies in southern states like LA, FL and TX. This data suggests the need to evaluate if a restricted mtDNA haplotype diversity in the US honey bee populations could have negative impacts on the beekeeping sustainability of this country.

9.
Insects ; 12(1)2020 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-33396669

RESUMO

The honey bee Apis mellifera L. colony is headed by a single and indispensable queen, whose duty it is to ensure brood production and provide pheromonal stability within the colony. This study presents a non-invasive method that allows the identification of the queen maternal lineage and subspecies using the remaining tissue of her clipped wing. The DraI mtDNA COI-COII (DmCC) test was applied to various sizes of queen and worker wings and the results were compared with data obtained from other bee tissues. Furthermore, we propose a new method allowing in silico transition of the DmCC test and haplotype identification based on extended sequencing of the tRNAleu and COII genes. Our results show that DNA extracted by Chelex 10% from one-third of a queen's wing is deemed adequate for a successful identification of her maternal evolutionary lineage, haplotype and subspecies. The in silico method proposed in this study fully adheres to the established guidelines of the DmCC, provides a universal standard for haplotype identification, and offers faster and more precise results by reconciling both cleaved amplified polymorphic sequences (CAPS) and Sanger sequencing approaches.

10.
J Exp Biol ; 222(Pt 18)2019 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-31413101

RESUMO

In this study, we present phenotypic and genetic data characterizing the impact of imidacloprid and caging stress on honey bee Apis mellifera physiological responses and regulation of 45 genes using targeted-RNA seq. The term 'caging stress' characterizes the effects of depriving honey bees of all hive aspects and conditions. Two cohorts of 1 day old sister bees were subjected to different conditions. One cohort was caged and fed different imidacloprid-tainted sugar solutions and the second was marked and introduced back to its natal hive. Physiological bee parameters and diet behavior were monitored daily for caged bees over several weeks. Bee samples from both cohorts were sampled weekly for RNA sequencing and oxidative stress analyses. Imidacloprid induced significant protein damage and post-ingestive aversion responses in caged bees, leading to lower tainted syrup consumption and higher water intake compared with the controls. No differentially expressed genes were observed among caged bees in regards to imidacloprid treatment. However, significant upregulation in antioxidant genes was recorded in caged bees as compared with hive bees, with overwhelming downregulation in all gene categories in caged bees at week 4. We identified two sets of genes that were constantly regulated in caged bees, including Rsod with unknown function in insects that could potentially characterize caging stress in honey bees.


Assuntos
Abelhas/fisiologia , Regulação da Expressão Gênica , Estresse Fisiológico , Animais , Abelhas/efeitos dos fármacos , Abelhas/genética , Carboidratos , Ingestão de Líquidos/efeitos dos fármacos , Comportamento Alimentar/efeitos dos fármacos , Feminino , Inseticidas/toxicidade , Neonicotinoides/toxicidade , Nitrocompostos/toxicidade , Estresse Oxidativo , RNA-Seq
11.
J Insect Physiol ; 117: 103891, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31176625

RESUMO

The honey bee, Apis mellifera L., is a major pollinator insect that lacks novel "selenoprotein genes", rendering it susceptible to elevated levels of Selenium (Se) occurring naturally in the environment. We investigated the effects of two inorganic forms of Se on biological traits, oxidative stress, and gene regulation. Using bioassay arenas in the laboratory, one-day old sister bees were fed ad libitum 4 different concentrations of selenate and selenite, two common inorganic forms of Se. The transcription levels of 4 honey bee antioxidant genes were evaluated, and three putative selenoprotein-like genes (SELENOT, SELENOK, SELENOF) were characterized as well as Sbp2, a Selenium binding protein required for the translation of selenoproteins mRNA. Oxidative stress and Se residues were subsequently quantified in honey bee bodies throughout the experiment. Se induced higher oxidative stress in treated honey bees leading to a significantly elevated protein carbonyl content, particularly at the highest studied concentrations. Early upregulations of Spb2 and MsrA were identified at day 2 of the treatment while all genes except SELENOT were upregulated substantially at day 8 to alleviate the Se-induced oxidative stress levels. We determined that doses between 60 and 600 mg.Se.L-1 were acutely toxic to bees (<48 h) while doses between 0.6 and 6 mg.Se.L-1 led to much lower mortality (7-16)%. Furthermore, when fed ad libitum, Se residue data indicated that bees tolerated accumulation up to 0.12 µg Se bee-1 for at least 8 days with a Se LC50 of ∼6 mg/L, a field realistic concentration found in pollen of certain plants in a high Se soil environment.


Assuntos
Abelhas/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Compostos de Selênio/toxicidade , Selênio/toxicidade , Selenoproteínas/genética , Animais , Abelhas/genética , Abelhas/metabolismo , Regulação da Expressão Gênica , Genes de Insetos , Selênio/metabolismo , Compostos de Selênio/metabolismo
12.
Sci Rep ; 8(1): 15003, 2018 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-30301926

RESUMO

The main objective of this study was to test comparatively the effects of two common insecticides on honey bee Apis mellifera worker's lifespan, food consumption, mortality, and expression of antioxidant genes. Newly emerged worker bees were exposed to organophosphate insecticide coumaphos, a neonicotinoid imidacloprid, and their mixtures. Toxicity tests were conducted along with bee midgut immunohistological TUNEL analyses. RT-qPCR assessed the regulation of 10 bee antioxidant genes linked to pesticide toxicity. We tested coumaphos at 92,600 ppb concentration, in combination with 5 and 20 ppb imidacloprid. Coumaphos induced significantly higher bee mortality, which was associated with down regulation of catalase compared to coumaphos and imidacloprid (5/20 ppb) mixtures, whereas, both imidacloprid concentrations independently had no effect on bee mortality. Mixture of coumaphos and imidacloprid reduced daily bee consumption of a control food patty to 10 mg from a coumaphos intake of 14.3 mg and 18.4 and 13.7 mg for imidacloprid (5 and 20) ppb, respectively. While coumaphos and imidacloprid mixtures induced down-regulation of antioxidant genes with noticeable midgut tissue damage, imidacloprid induced intensive gene up-regulations with less midgut apoptosis.


Assuntos
Antioxidantes/metabolismo , Abelhas/genética , Inseticidas/administração & dosagem , Longevidade/efeitos dos fármacos , Animais , Abelhas/efeitos dos fármacos , Abelhas/metabolismo , Cumafos/administração & dosagem , Regulação da Expressão Gênica/efeitos dos fármacos , Longevidade/genética , Neonicotinoides/administração & dosagem , Nitrocompostos/administração & dosagem
13.
Insects ; 9(2)2018 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-29899302

RESUMO

In order to study the in situ effects of the agricultural landscape and exposure to pesticides on honey bee health, sixteen honey bee colonies were placed in four different agricultural landscapes. Those landscapes were three agricultural areas with varying levels of agricultural intensity (AG areas) and one non-agricultural area (NAG area). Colonies were monitored for different pathogen prevalence and pesticide residues over a period of one year. RT-qPCR was used to study the prevalence of seven different honey bee viruses as well as Nosema sp. in colonies located in different agricultural systems with various intensities of soybean, corn, sorghum, and cotton production. Populations of the parasitic mite Varroa destructor were also extensively monitored. Comprehensive MS-LC pesticide residue analyses were performed on samples of wax, honey, foragers, winter bees, dead bees, and crop flowers for each apiary and location. A significantly higher level of varroa loads were recorded in colonies of the AG areas, but this at least partly correlated with increased colony size and did not necessarily result from exposure to pesticides. Infections of two viruses (deformed wing virus genotype a (DWVa) and acute bee paralysis virus (ABPV)) and Nosema sp. varied among the four studied locations. The urban location significantly elevated colony pathogen loads, while AG locations significantly benefited and increased the colony weight gain. Cotton and sorghum flowers contained high concentrations of insecticide including neonicotinoids, while soybean and corn had less pesticide residues. Several events of pesticide toxicity were recorded in the AG areas, and high concentrations of neonicotinoid insecticides were detected in dead bees.

14.
Insects ; 9(2)2018 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-29748510

RESUMO

The efficacies of various acaricides in order to control a parasitic mite, the Varroa mite, Varroa destructor, of honey bees, were measured in two different settings, namely, in laboratory caged honey bees and in queen-right honey bee colonies. The Varroa infestation levels before, during, and after the acaricide treatments were determined in two ways, namely: (1) using the sugar shake protocol to count mites on bees and (2) directly counting the dead mites on the hive bottom inserts. The acaricides that were evaluated were coumaphos, tau-fluvalinate, amitraz, thymol, and natural plant compounds (hop acids), which were the active ingredients. The acaricide efficacies in the colonies were evaluated in conjunction with the final coumaphos applications. All of the tested acaricides significantly increased the overall Varroa mortality in the laboratory experiment. Their highest efficiencies were recorded at 6 h post-treatment, except for coumaphos and thymol, which exhibited longer and more consistent activity. In the honey bee colonies, a higher Varroa mortality was recorded in all of the treatments, compared with the natural Varroa mortality during the pretreatment period. The acaricide toxicity to the Varroa mites was consistent in both the caged adult honey bees and workers in the queen-right colonies, although, two of these acaricides, coumaphos at the highest doses and hop acids, were comparatively more toxic to the worker bees.

15.
J Econ Entomol ; 110(3): 835-847, 2017 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-28398581

RESUMO

Sixteen honey bee (Apis mellifera L.) colonies were placed in four different agricultural landscapes to study the effects of agricultural landscape and exposure to pesticides on honey bee health. Colonies were located in three different agricultural areas with varying levels of agricultural intensity (AG areas) and one nonagricultural area (NAG area). Colonies were monitored for their performance and productivity for one year by measuring colony weight changes, brood production, and colony thermoregulation. Palynological and chemical analyses were conducted on the trapped pollen collected from each colony and location. Our results indicate that the landscape's composition significantly affected honey bee colony performance and development. Colony weight and brood production were significantly greater in AG areas compared to the NAG area. Better colony thermoregulation in AG areas' colonies was also observed. The quantities of pesticides measured in the trapped pollen were relatively low compared to their acute toxicity. Unexplained queen and colony losses were recorded in the AG areas, while colony losses because of starvation were observed in the NAG area. Our results indicate that landscape with high urban activity enhances honey bee brood production, with no significant effects on colony weight gain. Our study indicates that agricultural crops provide a valuable resource for honey bee colonies, but there is a trade-off with an increased risk of exposure to pesticides.


Assuntos
Agricultura/métodos , Abelhas/fisiologia , Inseticidas/toxicidade , Animais , Criação de Abelhas , Abelhas/efeitos dos fármacos , Reprodução/efeitos dos fármacos , Tennessee
16.
BMC Genomics ; 16: 500, 2015 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-26149072

RESUMO

BACKGROUND: Hygienic behavior is a complex, genetically-based quantitative trait that serves as a key defense mechanism against parasites and diseases in Apis mellifera. Yet, the genomic basis and functional pathways involved in the initiation of this behavior are still unclear. Deciphering the genomic basis of hygienic behavior is a prerequisite to developing an extensive repertoire of genetic markers associated to the performance level of this quantitative trait. To fill this knowledge gap, we performed an RNA-seq on brain samples of 25 honeybees per hives from five hygienic and three non-hygienic hives. RESULTS: This analysis revealed that a limited number of functional genes are involved in honeybee hygienic behavior. The genes identified, and especially their location in the honeybee genome, are consistent with previous findings. Indeed, the genomic sequences of most differentially expressed genes were found on the majority of the QTL regions associated to the hygienic behavior described in previous studies. According to the Gene Ontology annotation, 15 genes are linked to the GO-terms DNA or nucleotide binding, indicating a possible role of these genes in transcription regulation. Furthermore, GO-category enrichment analysis revealed that electron carrier activity is over-represented, involving only genes belonging to the cytochrome P450. Cytochrome P450 enzymes' overexpression can be explained by a disturbance in the regulation of expression induced by changes in transcription regulation or sensitivity to xenobiotics. Over-expressed cytochrome P450 enzymes could potentially degrade the odorant pheromones or chemicals that normally signal the presence of a diseased brood before activation of the removal process thereby inhibit hygienic behavior. CONCLUSIONS: These findings improve our understanding on the genetics basis of the hygienic behavior. Our results show that hygienic behavior relies on a limited set of genes linked to different regulation patterns (expression level and biological processes) associated with an over-expression of cytochrome P450 genes.


Assuntos
Abelhas/genética , Regulação da Expressão Gênica/genética , Genoma de Inseto/genética , Animais , Comportamento Animal , Encéfalo/metabolismo , Sistema Enzimático do Citocromo P-450/genética , Ontologia Genética , Marcadores Genéticos/genética , Anotação de Sequência Molecular/métodos , Comportamento Social , Transcrição Gênica/genética
17.
PLoS One ; 10(5): e0125790, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25993642

RESUMO

Thirty-two honeybee (Apis mellifera) colonies were studied in order to detect and measure potential in vivo effects of neonicotinoid pesticides used in cornfields (Zea mays spp) on honeybee health. Honeybee colonies were randomly split on four different agricultural cornfield areas located near Quebec City, Canada. Two locations contained cornfields treated with a seed-coated systemic neonicotinoid insecticide while the two others were organic cornfields used as control treatments. Hives were extensively monitored for their performance and health traits over a period of two years. Honeybee viruses (brood queen cell virus BQCV, deformed wing virus DWV, and Israeli acute paralysis virus IAPV) and the brain specific expression of a biomarker of host physiological stress, the Acetylcholinesterase gene AChE, were investigated using RT-qPCR. Liquid chromatography-mass spectrometry (LC-MS) was performed to detect pesticide residues in adult bees, honey, pollen, and corn flowers collected from the studied hives in each location. In addition, general hive conditions were assessed by monitoring colony weight and brood development. Neonicotinoids were only identified in corn flowers at low concentrations. However, honeybee colonies located in neonicotinoid treated cornfields expressed significantly higher pathogen infection than those located in untreated cornfields. AChE levels showed elevated levels among honeybees that collected corn pollen from treated fields. Positive correlations were recorded between pathogens and the treated locations. Our data suggests that neonicotinoids indirectly weaken honeybee health by inducing physiological stress and increasing pathogen loads.


Assuntos
Abelhas/efeitos dos fármacos , Abelhas/virologia , Praguicidas/toxicidade , Zea mays , Acetilcolinesterase/genética , Acetilcolinesterase/metabolismo , Animais , Abelhas/parasitologia , Suscetibilidade a Doenças , Flores/química , Flores/toxicidade , Genes de Insetos/efeitos dos fármacos , Agricultura Orgânica , Resíduos de Praguicidas/análise , Resíduos de Praguicidas/toxicidade , Praguicidas/análise , Pólen/química , Pólen/toxicidade , Sementes/química , Sementes/toxicidade , Estresse Fisiológico/efeitos dos fármacos , Varroidae/patogenicidade , Zea mays/química , Zea mays/toxicidade
18.
Mol Ecol Resour ; 15(3): 673-83, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25335970

RESUMO

Honeybee subspecies have been affected by human activities in Europe over the past few decades. One such example is the importation of nonlocal subspecies of bees which has had an adverse impact on the geographical repartition and subsequently on the genetic diversity of the black honeybee Apis mellifera mellifera. To restore the original diversity of this local honeybee subspecies, different conservation centres were set up in Europe. In this study, we established a black honeybee conservation centre Conservatoire de l'Abeille Noire d'Ile de France (CANIF) in the region of Ile-de-France, France. CANIF's honeybee colonies were intensively studied over a 3-year period. This study included a drone congregation area (DCA) located in the conservation centre. MtDNA COI-COII marker was used to evaluate the genetic diversity of CANIF's honeybee populations and the drones found and collected from the DCA. The same marker (mtDNA) was used to estimate the interactions and the haplotype frequency between CANIF's honeybee populations and 10 surrounding honeybee apiaries located outside of the CANIF. Our results indicate that the colonies of the conservation centre and the drones of the DCA show similar stable profiles compared to the surrounding populations with lower level of introgression. The mtDNA marker used on both DCA and colonies of the conservation centre seems to be an efficient approach to monitor and maintain the genetic diversity of the protected honeybee populations.


Assuntos
Abelhas/classificação , Abelhas/genética , DNA Mitocondrial/genética , Complexo IV da Cadeia de Transporte de Elétrons/genética , Variação Genética , Animais , França , Frequência do Gene , Genética Populacional , Haplótipos
19.
BMC Genet ; 14: 117, 2013 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-24314104

RESUMO

BACKGROUND: Apiculture has been practiced in North Africa and the Middle-East from antiquity. Several thousand years of selective breeding have left a mosaic of Apis mellifera subspecies in the Middle-East, many uniquely adapted and survived to local environmental conditions. In this study we explore the genetic diversity of A. mellifera from Syria (n = 1258), Lebanon (n = 169) and Iraq (n = 35) based on 14 short tandem repeat (STR) loci in the context of reference populations from throughout the Old World (n = 732). RESULTS: Our data suggest that the Syrian honeybee Apis mellifera syriaca occurs in both Syrian and Lebanese territories, with no significant genetic variability between respective populations from Syria and Lebanon. All studied populations clustered within a new fifth independent nuclear cluster, congruent with an mtDNA Z haplotype identified in a previous study. Syrian honeybee populations are not associated with Oriental lineage O, except for sporadic introgression into some populations close to the Turkish and Iraqi borders. Southern Syrian and Lebanese populations demonstrated high levels of genetic diversity compared to the northern populations. CONCLUSION: This study revealed the effects of foreign queen importations on Syrian bee populations, especially for the region of Tartus, where extensive introgression of A. m. anatolica and/or A. m. caucasica alleles were identified. The policy of creating genetic conservation centers for the Syrian subspecies should take into consideration the influence of the oriental lineage O from the northern Syrian border and the large population of genetically divergent indigenous honeybees located in southern Syria.


Assuntos
Abelhas/genética , Genoma , Animais , Abelhas/classificação , Análise por Conglomerados , DNA Mitocondrial/química , DNA Mitocondrial/metabolismo , Loci Gênicos , Variação Genética , Genética Populacional , Haplótipos , Heterozigoto , Repetições de Microssatélites , Mitocôndrias/genética , Análise de Componente Principal , Síria
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...