Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
1.
NPJ Breast Cancer ; 10(1): 14, 2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-38374091

RESUMO

HER2/ERBB2 evaluation is necessary for treatment decision-making in breast cancer (BC), however current methods have limitations and considerable variability exists. DNA copy number (CN) evaluation by droplet digital PCR (ddPCR) has complementary advantages for HER2/ERBB2 diagnostics. In this study, we developed a single-reaction multiplex ddPCR assay for determination of ERBB2 CN in reference to two control regions, CEP17 and a copy-number-stable region of chr. 2p13.1, validated CN estimations to clinical in situ hybridization (ISH) HER2 status, and investigated the association of ERBB2 CN with clinical outcomes. 909 primary BC tissues were evaluated and the area under the curve for concordance to HER2 status was 0.93 and 0.96 for ERBB2 CN using either CEP17 or 2p13.1 as reference, respectively. The accuracy of ddPCR ERBB2 CN was 93.7% and 94.1% in the training and validation groups, respectively. Positive and negative predictive value for the classic HER2 amplification and non-amplification groups was 97.2% and 94.8%, respectively. An identified biological "ultrahigh" ERBB2 ddPCR CN group had significantly worse survival within patients treated with adjuvant trastuzumab for both recurrence-free survival (hazard ratio, HR: 3.3; 95% CI 1.1-9.6; p = 0.031, multivariable Cox regression) and overall survival (HR: 3.6; 95% CI 1.1-12.6; p = 0.041). For validation using RNA-seq data as a surrogate, in a population-based SCAN-B cohort (NCT02306096) of 682 consecutive patients receiving adjuvant trastuzumab, the ultrahigh-ERBB2 mRNA group had significantly worse survival. Multiplex ddPCR is useful for ERBB2 CN estimation and ultrahigh ERBB2 may be a predictive factor for decreased long-term survival after trastuzumab treatment.

3.
Sci Rep ; 11(1): 21160, 2021 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-34759290

RESUMO

To gain insight into pre-contact Coast Salish fishing practices, we used new palaeogenetic analytical techniques to assign sex identifications to salmonid bones from four archaeological sites in Burrard Inlet (Tsleil-Waut), British Columbia, Canada, dating between about 2300-1000 BP (ca. 400 BCE-CE 1200). Our results indicate that male chum salmon (Oncorhynchus keta) were preferentially targeted at two of the four sampled archaeological sites. Because a single male salmon can mate with several females, selectively harvesting male salmon can increase a fishery's maximum sustainable harvest. We suggest such selective harvesting of visually distinctive male spawning chum salmon was a common practice, most effectively undertaken at wooden weirs spanning small salmon rivers and streams. We argue that this selective harvesting of males is indicative of an ancient and probably geographically widespread practice for ensuring sustainable salmon populations. The archaeological data presented here confirms earlier ethnographic accounts describing the selective harvest of male salmon.


Assuntos
Oncorhynchus keta , Alimentos Marinhos , Animais , Colúmbia Britânica , Caça , Masculino , Rios
4.
Sci Rep ; 10(1): 12564, 2020 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-32724107

RESUMO

Cell-free DNA (cfDNA) has become a comprehensive biomarker in the fields of non-invasive cancer detection and monitoring, organ transplantation, prenatal genetic testing and pathogen detection. While cfDNA samples can be obtained using a broad variety of approaches, there is an urgent need to standardize analytical tools aimed at assessing its basic properties. Typical methods to determine the yield and fragment size distribution of cfDNA samples are usually either blind to genomic DNA contamination or the presence of enzymatic inhibitors, which can confound and undermine downstream analyses. Here, we present a novel droplet digital PCR assay to identify suboptimal samples and aberrant cfDNA size distributions, the latter typically associated with high levels of circulating tumour DNA (ctDNA). Our assay was designed to promiscuously cross-amplify members of the human olfactory receptor (OR) gene family and includes a customizable diploid locus for the determination of absolute cfDNA concentrations. We demonstrate here the utility of our assay to estimate the yield and quality of cfDNA extracts and deduce fragment size distributions that correlate well with those inferred by capillary electrophoresis and high throughput sequencing. The assay described herein is a powerful tool to establish quality controls and stratify cfDNA samples based on presumed ctDNA levels, then facilitating the implementation of robust, cost-effective and standardized analytical workflows into clinical practice.


Assuntos
Ácidos Nucleicos Livres/genética , Reação em Cadeia da Polimerase/métodos , Biomarcadores Tumorais/genética , Humanos , Receptores Odorantes/genética
5.
Blood Adv ; 4(13): 2886-2898, 2020 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-32589730

RESUMO

Diffuse large B-cell lymphoma (DLBCL) patients are typically treated with immunochemotherapy containing rituximab (rituximab, cyclophosphamide, hydroxydaunorubicin-vincristine (Oncovin), and prednisone [R-CHOP]); however, prognosis is extremely poor if R-CHOP fails. To identify genetic mechanisms contributing to primary or acquired R-CHOP resistance, we performed target-panel sequencing of 135 relapsed/refractory DLBCLs (rrDLBCLs), primarily comprising circulating tumor DNA from patients on clinical trials. Comparison with a metacohort of 1670 diagnostic DLBCLs identified 6 genes significantly enriched for mutations upon relapse. TP53 and KMT2D were mutated in the majority of rrDLBCLs, and these mutations remained clonally persistent throughout treatment in paired diagnostic-relapse samples, suggesting a role in primary treatment resistance. Nonsense and missense mutations affecting MS4A1, which encodes CD20, are exceedingly rare in diagnostic samples but show recurrent patterns of clonal expansion following rituximab-based therapy. MS4A1 missense mutations within the transmembrane domains lead to loss of CD20 in vitro, and patient tumors harboring these mutations lacked CD20 protein expression. In a time series from a patient treated with multiple rounds of therapy, tumor heterogeneity and minor MS4A1-harboring subclones contributed to rapid disease recurrence, with MS4A1 mutations as founding events for these subclones. TP53 and KMT2D mutation status, in combination with other prognostic factors, may be used to identify high-risk patients prior to R-CHOP for posttreatment monitoring. Using liquid biopsies, we show the potential to identify tumors with loss of CD20 surface expression stemming from MS4A1 mutations. Implementation of noninvasive assays to detect such features of acquired treatment resistance may allow timely transition to more effective treatment regimens.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica , Linfoma Difuso de Grandes Células B , Anticorpos Monoclonais Murinos , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Humanos , Linfoma Difuso de Grandes Células B/tratamento farmacológico , Linfoma Difuso de Grandes Células B/genética , Recidiva Local de Neoplasia/tratamento farmacológico , Recidiva Local de Neoplasia/genética , Rituximab/uso terapêutico
6.
Blood ; 136(5): 572-584, 2020 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-32160292

RESUMO

Mantle cell lymphoma (MCL) is an uncommon B-cell non-Hodgkin lymphoma (NHL) that is incurable with standard therapies. The genetic drivers of this cancer have not been firmly established, and the features that contribute to differences in clinical course remain limited. To extend our understanding of the biological pathways involved in this malignancy, we performed a large-scale genomic analysis of MCL using data from 51 exomes and 34 genomes alongside previously published exome cohorts. To confirm our findings, we resequenced the genes identified in the exome cohort in 191 MCL tumors, each having clinical follow-up data. We confirmed the prognostic association of TP53 and NOTCH1 mutations. Our sequencing revealed novel recurrent noncoding mutations surrounding a single exon of the HNRNPH1gene. In RNA-seq data from 103 of these cases, MCL tumors with these mutations had a distinct imbalance of HNRNPH1 isoforms. This altered splicing of HNRNPH1 was associated with inferior outcomes in MCL and showed a significant increase in protein expression by immunohistochemistry. We describe a functional role for these recurrent noncoding mutations in disrupting an autoregulatory feedback mechanism, thereby deregulating HNRNPH1 protein expression. Taken together, these data strongly imply a role for aberrant regulation of messenger RNA processing in MCL pathobiology.


Assuntos
Predisposição Genética para Doença/genética , Ribonucleoproteínas Nucleares Heterogêneas/genética , Linfoma de Célula do Manto/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Feminino , Genótipo , Humanos , Masculino , Pessoa de Meia-Idade , Mutação , Sequenciamento Completo do Genoma
8.
Blood ; 134(18): 1528-1532, 2019 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-31527075

RESUMO

High-grade B-cell lymphomas with MYC and BCL2 and/or BCL6 rearrangements (HGBL-DH/THs) include a group of diffuse large B-cell lymphomas (DLBCLs) with inferior outcomes after standard chemoimmunotherapy. We recently described a gene expression signature that identifies 27% of germinal center B-cell DLBCLs (GCB-DLBCLs) as having a double-hit-like expression pattern (DHITsig) and inferior outcomes; however, only half of these cases have both MYC and BCL2 translocations identifiable using standard breakapart fluorescence in situ hybridization (FISH). Here, 20 DHITsig+ GCB-DLBCLs apparently lacking MYC and/or BCL2 rearrangements underwent whole-genome sequencing. This revealed 6 tumors with MYC or BCL2 rearrangements that were cryptic to breakapart FISH. Copy-number analysis identified 3 tumors with MYC and 6 tumors with MIR17HG gains or amplifications, both of which may contribute to dysregulation of MYC and its downstream pathways. Focal deletions of the PVT1 promoter were observed exclusively among DHITsig+ tumors lacking MYC translocations; this may also contribute to MYC overexpression. These results highlight that FISH fails to identify all HGBL-DH/THs, while revealing a range of other genetic mechanisms potentially underlying MYC dysregulation in DHITsig+ DLBCL, suggesting that gene expression profiling is more sensitive for identifying the biology underlying poor outcomes in GCB-DLBCL.


Assuntos
Perfilação da Expressão Gênica/métodos , Linfoma Difuso de Grandes Células B/genética , Humanos , Hibridização in Situ Fluorescente , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-myc/genética , Transcriptoma
9.
Biotechniques ; 66(2): 85-92, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30744412

RESUMO

The analysis of cell-free circulating tumor DNA (ctDNA) is potentially a less invasive, more dynamic assessment of cancer progression and treatment response than characterizing solid tumor biopsies. Standard isolation methods require separation of plasma by centrifugation, a time-consuming step that complicates automation. To address these limitations, we present an automatable magnetic bead-based ctDNA isolation method that eliminates centrifugation to purify ctDNA directly from peripheral blood (PB). To develop and test our method, ctDNA from cancer patients was purified from PB and plasma. We found that allelic fractions of somatic single-nucleotide variants from target gene capture libraries were comparable, indicating that the PB ctDNA purification method may be a suitable replacement for the plasma-based protocols currently in use.


Assuntos
Ácidos Nucleicos Livres/sangue , DNA Tumoral Circulante/sangue , Ensaios de Triagem em Larga Escala/métodos , Neoplasias/sangue , Biomarcadores Tumorais/sangue , Biomarcadores Tumorais/isolamento & purificação , Ácidos Nucleicos Livres/isolamento & purificação , DNA Tumoral Circulante/isolamento & purificação , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Mutação , Neoplasias/genética
10.
Methods Mol Biol ; 1956: 383-435, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30779047

RESUMO

Liquid biopsies are rapidly emerging as powerful tools for the early detection of cancer, noninvasive genomic profiling of localized or metastatic tumors, prompt detection of treatment resistance-associated mutations, and monitoring of therapeutic response and minimal residual disease in patients during clinical follow-up. Growing evidence strongly supports the utility of circulating tumor DNA (ctDNA) as a biomarker for the stratification and clinical management of lymphoma patients. However, ctDNA is diluted by variable amounts of cell-free DNA (cfDNA) shed by nonneoplastic cells causing a background signal of wild-type DNA that limits the sensitivity of methods that rely on DNA sequencing. Here, we describe an error suppression method for single-molecule counting that relies on targeted sequencing of cfDNA libraries constructed with semi-degenerate barcode adapters. Custom pools of biotinylated DNA baits for target enrichment can be designed to specifically track somatic mutations in one patient, survey mutation hotspots with diagnostic and prognostic value or be comprised of comprehensive gene panels with broad patient coverage in lymphoma. Such methods are amenable to track ctDNA levels during longitudinal liquid biopsy testing with high specificity and sensitivity and characterize, in real time, the genetic profiles of tumors without the need of standard invasive biopsies. The analysis of ultra-deep sequencing data according to the bioinformatics pipelines also described in this chapter affords to harness lower limits of detection for ctDNA below 0.1%.


Assuntos
DNA Tumoral Circulante/genética , Biblioteca Gênica , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Biópsia Líquida/métodos , Linfoma/genética , Coleta de Amostras Sanguíneas/métodos , DNA Tumoral Circulante/sangue , Código de Barras de DNA Taxonômico/métodos , Análise Mutacional de DNA/métodos , Humanos , Linfoma/sangue , Hibridização de Ácido Nucleico/métodos
11.
J Mol Diagn ; 21(2): 214-227, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30472330

RESUMO

Recurrent activating point mutations in KRAS are critical drivers in pancreatic cancer and have been attributed to resistance to anti-epidermal growth factor receptor therapy in colorectal cancer. Although KRAS genotyping provides limited clinical utility in the diagnosis and management of pancreatic cancer patients at present, inferences about the fractional abundance of KRAS mutations may inform on tumor purity in traditionally challenging clinical specimens and their potential use in precision medicine. KRAS genetic testing has indeed become an essential tool to guide treatment decisions in colorectal cancer, but an unmet need for methods standardization exists. Here, we present a unique droplet digital PCR method that enables the simultaneous detection and quantification of KRAS exon 2, 3, and 4 point mutations and copy number alterations. We have validated 13 mutations (G12S, G12R, G12D, G12A, G12V, G12C, G13D, G60V, Q61H, Q61L, A146V, A146T, and A146P) and focal KRAS amplifications by conducting this assay in a cohort of 100 DNA samples extracted from fresh frozen tumor biopsies, formaldehyde-fixed, paraffin-embedded tissue, and liquid biopsy specimens. Despite its modest lower limit of detection (approximately 1%), this assay will be a rapid cost-effective means to infer the purity of biopsy specimens carrying KRAS mutations and can be used in noninvasive serial monitoring of circulating tumor DNA to evaluate clinical response and/or detect early signs of relapse.


Assuntos
Reação em Cadeia da Polimerase Multiplex/métodos , Mutação/genética , Proteínas Proto-Oncogênicas p21(ras)/genética , Neoplasias Colorretais/genética , DNA de Neoplasias/genética , Éxons/genética , Genótipo , Humanos , Neoplasias Pancreáticas/genética
12.
Nat Commun ; 9(1): 4001, 2018 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-30275490

RESUMO

Diffuse large B-cell lymphoma (DLBCL) is an aggressive cancer originating from mature B-cells. Prognosis is strongly associated with molecular subgroup, although the driver mutations that distinguish the two main subgroups remain poorly defined. Through an integrative analysis of whole genomes, exomes, and transcriptomes, we have uncovered genes and non-coding loci that are commonly mutated in DLBCL. Our analysis has identified novel cis-regulatory sites, and implicates recurrent mutations in the 3' UTR of NFKBIZ as a novel mechanism of oncogene deregulation and NF-κB pathway activation in the activated B-cell (ABC) subgroup. Small amplifications associated with over-expression of FCGR2B (the Fcγ receptor protein IIB), primarily in the germinal centre B-cell (GCB) subgroup, correlate with poor patient outcomes suggestive of a novel oncogene. These results expand the list of subgroup driver mutations that may facilitate implementation of improved diagnostic assays and could offer new avenues for the development of targeted therapeutics.


Assuntos
Regulação Neoplásica da Expressão Gênica , Genes Reguladores/genética , Variação Genética , Genoma Humano/genética , Linfoma Difuso de Grandes Células B/genética , Regiões 3' não Traduzidas/genética , Proteínas Adaptadoras de Transdução de Sinal , Linfócitos B/metabolismo , Linfócitos B/patologia , Linhagem Celular Tumoral , Exoma/genética , Estudo de Associação Genômica Ampla , Centro Germinativo/metabolismo , Centro Germinativo/patologia , Humanos , Proteínas I-kappa B/genética , Linfoma Difuso de Grandes Células B/metabolismo , Linfoma Difuso de Grandes Células B/patologia , Mutação , Proteínas Nucleares/genética , Receptores de IgG/genética , Análise de Sequência de DNA , Transcriptoma
13.
Mol Ecol ; 27(23): 4839-4855, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30187980

RESUMO

Detailed evaluations of genomic variation between sister species often reveal distinct chromosomal regions of high relative differentiation (i.e., "islands of differentiation" in FST ), but there is much debate regarding the causes of this pattern. We briefly review the prominent models of genomic islands of differentiation and compare patterns of genomic differentiation in three closely related pairs of New World warblers with the goal of evaluating support for the four models. Each pair (MacGillivray's/mourning warblers; Townsend's/black-throated green warblers; and Audubon's/myrtle warblers) consists of forms that were likely separated in western and eastern North American refugia during cycles of Pleistocene glaciations and have now come into contact in western Canada, where each forms a narrow hybrid zone. We show strong differences between pairs in their patterns of genomic heterogeneity in FST , suggesting differing selective forces and/or differing genomic responses to similar selective forces among the three pairs. Across most of the genome, levels of within-group nucleotide diversity (πWithin ) are almost as large as levels of between-group nucleotide distance (πBetween ) within each pair, suggesting recent common ancestry and/or gene flow. In two pairs, a pattern of the FST peaks having low πBetween suggests that selective sweeps spread between geographically differentiated groups, followed by local differentiation. This "sweep-before-differentiation" model is consistent with signatures of gene flow within the yellow-rumped warbler species complex. These findings add to our growing understanding of speciation as a complex process that can involve phases of adaptive introgression among partially differentiated populations.


Assuntos
Fluxo Gênico , Especiação Genética , Ilhas Genômicas , Aves Canoras/genética , Animais , Canadá , Variação Genética , Genômica , Modelos Genéticos , Aves Canoras/classificação
14.
Mol Ecol ; 2018 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-30010226

RESUMO

Studies of MHC-based mate choice in wild populations often test hypotheses on species exhibiting female choice and male-male competition, which reflects the general prevalence of females as the choosy sex in natural systems. Here, we examined mutual mate-choice patterns in a small burrow-nesting seabird, the Leach's storm-petrel (Oceanodroma leucorhoa), using the major histocompatibility complex (MHC). The life history and ecology of this species are extreme: both partners work together to fledge a single chick during the breeding season, a task that requires regularly travelling hundreds of kilometres to and from foraging grounds over a 6- to 8-week provisioning period. Using a 5-year data set unprecedented for this species (n = 1078 adults and 925 chicks), we found a positive relationship between variation in the likelihood of female reproductive success and heterozygosity at Ocle-DAB2, a MHC class IIB locus. Contrary to previous reports rejecting disassortative mating as a mechanism for maintaining genetic polymorphism in this species, here we show that males make significant disassortative mate-choice decisions. Variability in female reproductive success suggests that the most common homozygous females (Ocle-DAB2*01/Ocle-DAB2*01) may be physiologically disadvantaged and, therefore, less preferred as lifelong partners for choosy males. The results from this study support the role of mate choice in maintaining high levels of MHC variability in a wild seabird species and highlight the need to incorporate a broader ecological framework and sufficient sample sizes into studies of MHC-based mating patterns in wild populations in general.

15.
Methods Mol Biol ; 1768: 275-301, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29717449

RESUMO

Droplet digital PCR (ddPCR) has come to be regarded as the gold standard for the ultrasensitive detection and absolute quantification of closely related DNA sequences within complex mixtures. Most ddPCR assays to date, however, rely on sets of hydrolysis probes conjugated with dyes having different emission spectra to allow independent counting of rare mutant and wild-type alleles. Here, we describe a set of novel strategies that leverage the simultaneous detection and quantification of both mutant and wild-type alleles with a single hydrolysis probe. Variants of these strategies empower multiplexing and a more cost-effective approach for concurrent screening of multiple genetic variants.


Assuntos
Alelos , DNA/isolamento & purificação , Variação Genética/genética , Reação em Cadeia da Polimerase Multiplex/métodos , DNA/genética , Humanos , Reação em Cadeia da Polimerase Multiplex/instrumentação
16.
Leuk Lymphoma ; 59(12): 2904-2910, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-29616865

RESUMO

We investigated panobinostat 40 mg three times weekly in 35 adult patients with relapsed/refractory (R/R) diffuse large B-cell lymphoma (DLBCL). Overall response rate and complete response were 17.1% and 11.4%, respectively. Median progression-free survival (PFS) and overall survival were 2.4 and 7.6 months, respectively. Calculated 12, 24 and 36 months PFS were 26%, 11% and 11%, respectively. Four patients who achieved a sustained CR, continued receiving panobinostat for an overall period of 44, 48, 50, 62 months. Thrombocytopenia grade 3 (5 patients) and 4 (24 patients) represented the main toxic effect, causing dose reduction or treatment suspension in 19 patients. Genomic analysis was unable to identify any relationship between mutations and response; TP53 mutation appeared not to impact the clinical outcome. Overall, panobinostat has a modest activity in R/R DLBCL patients, however it can induce very long lasting responses in some cases. Thrombocytopenia frequently limits the use of this agent.


Assuntos
Antineoplásicos/administração & dosagem , Linfoma Difuso de Grandes Células B/tratamento farmacológico , Recidiva Local de Neoplasia/tratamento farmacológico , Panobinostat/administração & dosagem , Trombocitopenia/epidemiologia , Idoso , Antineoplásicos/efeitos adversos , Relação Dose-Resposta a Droga , Esquema de Medicação , Resistencia a Medicamentos Antineoplásicos , Feminino , Humanos , Itália/epidemiologia , Linfoma Difuso de Grandes Células B/genética , Linfoma Difuso de Grandes Células B/mortalidade , Linfoma Difuso de Grandes Células B/patologia , Masculino , Mutação , Recidiva Local de Neoplasia/genética , Recidiva Local de Neoplasia/mortalidade , Recidiva Local de Neoplasia/patologia , Panobinostat/efeitos adversos , Intervalo Livre de Progressão , Estudos Prospectivos , Trombocitopenia/induzido quimicamente , Fatores de Tempo , Proteína Supressora de Tumor p53/genética
17.
Leuk Lymphoma ; 59(9): 2159-2174, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29295643

RESUMO

Relapse occurs in 10-40% of Burkitt lymphoma (BL) patients that have completed intensive chemotherapy regimens and is typically fatal. While treatment-naive BL has been characterized, the genomic landscape of BL at the time of relapse (rBL) has never been reported. Here, we present a genomic characterization of two rBL patients. The diagnostic samples had mutations common in BL, including MYC and CCND3. Additional mutations were detected at relapse, affecting important pathways such as NFκB (IKBKB) and MEK/ERK (NRAS) signaling, glutamine metabolism (SIRT4), and RNA processing (ZFP36L2). Genes implicated in drug resistance were also mutated at relapse (TP53, BAX, ALDH3A1, APAF1, FANCI). This concurrent genomic profiling of samples obtained at diagnosis and relapse has revealed mutations not previously reported in this disease. The patient-derived cell lines will be made available and, along with their detailed genetics, will be a valuable resource to examine the role of specific mutations in therapeutic resistance.


Assuntos
Linfoma de Burkitt/genética , Genômica/métodos , Mutação , Recidiva Local de Neoplasia/genética , Adulto , Linfoma de Burkitt/tratamento farmacológico , Linfoma de Burkitt/patologia , Linhagem Celular Tumoral , Ciclina D3/genética , Humanos , Masculino , Análise de Sequência de DNA , Adulto Jovem , Proteína X Associada a bcl-2/genética
18.
Sci Rep ; 7(1): 10574, 2017 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-28874686

RESUMO

Ultrasensitive methods for rare allele detection are critical to leverage the full potential offered by liquid biopsies. Here, we describe a novel molecular barcoding method for the precise detection and quantification of circulating tumor DNA (ctDNA). The major benefits of our design include straightforward and cost-effective production of barcoded adapters to tag individual DNA molecules before PCR and sequencing, and better control over cross-contamination between experiments. We validated our approach in a cohort of 24 patients with a broad spectrum of cancer diagnoses by targeting and quantifying single-nucleotide variants (SNVs), indels and genomic rearrangements in plasma samples. By using personalized panels targeting a priori known mutations, we demonstrate comprehensive error-suppression capabilities for SNVs and detection thresholds for ctDNA below 0.1%. We also show that our semi-degenerate barcoded adapters hold promise for noninvasive genotyping in the absence of tumor biopsies and monitoring of minimal residual disease in longitudinal plasma samples. The benefits demonstrated here include broad applicability, flexibility, affordability and reproducibility in the research and clinical settings.


Assuntos
Biomarcadores Tumorais , DNA Tumoral Circulante , DNA de Neoplasias/sangue , Testes Genéticos , Neoplasias/diagnóstico , Neoplasias/genética , DNA Tumoral Circulante/química , DNA Tumoral Circulante/genética , Sequência Consenso , Código de Barras de DNA Taxonômico , Testes Genéticos/métodos , Genômica/métodos , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Medicina de Precisão/métodos
19.
Circ Cardiovasc Genet ; 10(4)2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28807990

RESUMO

BACKGROUND: Inherited arrhythmia syndromes are responsible for a significant portion of autopsy-negative sudden unexpected death (SUD) cases, but molecular autopsy used to identify potentially causal variants is not routinely included in SUD investigations. We collaborated with a medical examiner's office to assist in finding a diagnosis for their autopsy-negative child SUD cases. METHODS AND RESULTS: 191 child SUD cases (<5 years of age) were selected for analyses. Our next generation sequencing panel incorporated 38 inherited arrhythmia syndrome candidate genes and another 33 genes not previously investigated for variants that may underlie SUDY pathophysiology. Overall, we identified 11 potentially causal disease-associated variants in 12 cases, for an overall yield of 6.3%. We also identified 31 variants of uncertain significance in 36 cases and 16 novel variants predicted to be pathogenic in silico in 15 cases. The disease-associated variants were reported to the medical examiner to notify surviving relatives and recommend clinical assessment. CONCLUSIONS: We have identified variants that may assist in the diagnosis of at least 6.3% of autopsy-negative child SUD cases and reduce risk of future SUD in surviving relatives. We recommend a cautious approach to variant interpretation. We also suggest inclusion of cardiomyopathy genes as well as other candidate SUD genes in molecular autopsy analyses.


Assuntos
Arritmias Cardíacas/genética , Morte Súbita Cardíaca/patologia , Arritmias Cardíacas/diagnóstico , Pré-Escolar , Estudos de Coortes , DNA/química , DNA/isolamento & purificação , DNA/metabolismo , Feminino , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Lactente , Recém-Nascido , Masculino , Fenótipo , Placofilinas/genética , Análise de Sequência de DNA , Trocador de Sódio e Cálcio/genética , Troponina I/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA