Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Comput Biol Med ; 163: 107085, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37399741

RESUMO

Obesity in children is related to the development of cardiometabolic complications later in life, where molecular changes of visceral adipose tissue (VAT) and skeletal muscle tissue (SMT) have been proven to be fundamental. The aim of this study is to unveil the gene expression architecture of both tissues in a cohort of Spanish boys with obesity, using a clustering method known as weighted gene co-expression network analysis. For this purpose, we have followed a multi-objective analytic pipeline consisting of three main approaches; identification of gene co-expression clusters associated with childhood obesity, individually in VAT and SMT (intra-tissue, approach I); identification of gene co-expression clusters associated with obesity-metabolic alterations, individually in VAT and SMT (intra-tissue, approach II); and identification of gene co-expression clusters associated with obesity-metabolic alterations simultaneously in VAT and SMT (inter-tissue, approach III). In both tissues, we identified independent and inter-tissue gene co-expression signatures associated with obesity and cardiovascular risk, some of which exceeded multiple-test correction filters. In these signatures, we could identify some central hub genes (e.g., NDUFB8, GUCY1B1, KCNMA1, NPR2, PPP3CC) participating in relevant metabolic pathways exceeding multiple-testing correction filters. We identified the central hub genes PIK3R2, PPP3C and PTPN5 associated with MAPK signaling and insulin resistance terms. This is the first time that these genes have been associated with childhood obesity in both tissues. Therefore, they could be potential novel molecular targets for drugs and health interventions, opening new lines of research on the personalized care in this pathology. This work generates interesting hypotheses about the transcriptomics alterations underlying metabolic health alterations in obesity in the pediatric population.


Assuntos
Doenças Cardiovasculares , Obesidade Infantil , Masculino , Humanos , Criança , Transcriptoma/genética , Obesidade Infantil/genética , Obesidade Infantil/complicações , Obesidade Infantil/metabolismo , Perfilação da Expressão Gênica , Gordura Intra-Abdominal/metabolismo , Gordura Intra-Abdominal/patologia , Músculo Esquelético , Doenças Cardiovasculares/patologia , Proteínas Tirosina Fosfatases não Receptoras/metabolismo
2.
Comput Methods Programs Biomed ; 240: 107719, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37453366

RESUMO

BACKGROUND AND OBJECTIVE: Prostate cancer is one of the most prevalent forms of cancer in men worldwide. Traditional screening strategies such as serum PSA levels, which are not necessarily cancer-specific, or digital rectal exams, which are often inconclusive, are still the screening methods used for the disease. Some studies have focused on identifying biomarkers of the disease but none have been reported for diagnosis in routine clinical practice and few studies have provided tools to assist the pathologist in the decision-making process when analyzing prostate tissue. Therefore, a classifier is proposed to predict the occurrence of PCa that provides physicians with accurate predictions and understandable explanations. METHODS: A selection of 47 genes was made based on differential expression between PCa and normal tissue, GO gene ontology as well as the literature to be used as input predictors for different machine learning methods based on eXplainable Artificial Intelligence. These methods were trained using different class-balancing strategies to build accurate classifiers using gene expression data from 550 samples from 'The Cancer Genome Atlas'. Our model was validated in four external cohorts with different ancestries, totaling 463 samples. In addition, a set of SHapley Additive exPlanations was provided to help clinicians understand the underlying reasons for each decision. RESULTS: An in-depth analysis showed that the Random Forest algorithm combined with majority class downsampling was the best performing approach with robust statistical significance. Our method achieved an average sensitivity and specificity of 0.90 and 0.8 with an AUC of 0.84 across all databases. The relevance of DLX1, MYL9 and FGFR genes for PCa screening was demonstrated in addition to the important role of novel genes such as CAV2 and MYLK. CONCLUSIONS: This model has shown good performance in 4 independent external cohorts of different ancestries and the explanations provided are consistent with each other and with the literature, opening a horizon for its application in clinical practice. In the near future, these genes, in combination with our model, could be applied to liquid biopsy to improve PCa screening.


Assuntos
Inteligência Artificial , Neoplasias da Próstata , Masculino , Humanos , Neoplasias da Próstata/genética , Sensibilidade e Especificidade , Expressão Gênica
3.
Genes (Basel) ; 14(2)2023 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-36833178

RESUMO

The use of machine learning techniques for the construction of predictive models of disease outcomes (based on omics and other types of molecular data) has gained enormous relevance in the last few years in the biomedical field. Nonetheless, the virtuosity of omics studies and machine learning tools are subject to the proper application of algorithms as well as the appropriate pre-processing and management of input omics and molecular data. Currently, many of the available approaches that use machine learning on omics data for predictive purposes make mistakes in several of the following key steps: experimental design, feature selection, data pre-processing, and algorithm selection. For this reason, we propose the current work as a guideline on how to confront the main challenges inherent to multi-omics human data. As such, a series of best practices and recommendations are also presented for each of the steps defined. In particular, the main particularities of each omics data layer, the most suitable preprocessing approaches for each source, and a compilation of best practices and tips for the study of disease development prediction using machine learning are described. Using examples of real data, we show how to address the key problems mentioned in multi-omics research (e.g., biological heterogeneity, technical noise, high dimensionality, presence of missing values, and class imbalance). Finally, we define the proposals for model improvement based on the results found, which serve as the bases for future work.


Assuntos
Obesidade Infantil , Criança , Humanos , Aprendizado de Máquina , Algoritmos
4.
Int J Mol Sci ; 22(5)2021 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-33803198

RESUMO

Extracellular matrix (ECM) remodeling plays important roles in both white adipose tissue (WAT) and the skeletal muscle (SM) metabolism. Excessive adipocyte hypertrophy causes fibrosis, inflammation, and metabolic dysfunction in adipose tissue, as well as impaired adipogenesis. Similarly, disturbed ECM remodeling in SM has metabolic consequences such as decreased insulin sensitivity. Most of described ECM molecular alterations have been associated with DNA sequence variation, alterations in gene expression patterns, and epigenetic modifications. Among others, the most important epigenetic mechanism by which cells are able to modulate their gene expression is DNA methylation. Epigenome-Wide Association Studies (EWAS) have become a powerful approach to identify DNA methylation variation associated with biological traits in humans. Likewise, Genome-Wide Association Studies (GWAS) and gene expression microarrays have allowed the study of whole-genome genetics and transcriptomics patterns in obesity and metabolic diseases. The aim of this review is to explore the molecular basis of ECM in WAT and SM remodeling in obesity and the consequences of metabolic complications. For that purpose, we reviewed scientific literature including all omics approaches reporting genetic, epigenetic, and transcriptomic (GWAS, EWAS, and RNA-seq or cDNA arrays) ECM-related alterations in WAT and SM as associated with metabolic dysfunction and obesity.


Assuntos
Tecido Adiposo Branco/metabolismo , Matriz Extracelular/metabolismo , Doenças Metabólicas/metabolismo , Músculo Esquelético/metabolismo , Obesidade/metabolismo , Tecido Adiposo Branco/patologia , Animais , Matriz Extracelular/genética , Matriz Extracelular/patologia , Estudo de Associação Genômica Ampla , Humanos , Doenças Metabólicas/genética , Doenças Metabólicas/patologia , Músculo Esquelético/patologia , Obesidade/genética , Obesidade/patologia
5.
J Clin Med ; 9(6)2020 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-32498346

RESUMO

Polygenetic risk scores (pGRSs) consisting of adult body mass index (BMI) genetic variants have been widely associated with obesity in children populations. The implication of such obesity pGRSs in the development of cardio-metabolic alterations during childhood as well as their utility for the clinical prediction of pubertal obesity outcomes has been barely investigated otherwise. In the present study, we evaluated the utility of an adult BMI predisposing pGRS for the prediction and pharmacological management of obesity in Spanish children, further investigating its implication in the appearance of cardio-metabolic alterations. For that purpose, we counted on genetics data from three well-characterized children populations (composed of 574, 96 and 124 individuals), following both cross-sectional and longitudinal designs, expanding childhood and puberty. As a result, we demonstrated that the pGRS is strongly associated with childhood BMI Z-Score (B = 1.56, SE = 0.27 and p-value = 1.90 × 10-8), and that could be used as a good predictor of obesity longitudinal trajectories during puberty. On the other hand, we showed that the pGRS is not associated with cardio-metabolic comorbidities in children and that certain environmental factors interact with the genetic predisposition to the disease. Finally, according to the results derived from a weight-reduction metformin intervention in children with obesity, we discarded the utility of the pGRS as a pharmacogenetics marker of metformin response.

6.
PLoS Comput Biol ; 16(4): e1007792, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32275707

RESUMO

Until date, several machine learning approaches have been proposed for the dynamic modeling of temporal omics data. Although they have yielded impressive results in terms of model accuracy and predictive ability, most of these applications are based on "Black-box" algorithms and more interpretable models have been claimed by the research community. The recent eXplainable Artificial Intelligence (XAI) revolution offers a solution for this issue, were rule-based approaches are highly suitable for explanatory purposes. The further integration of the data mining process along with functional-annotation and pathway analyses is an additional way towards more explanatory and biologically soundness models. In this paper, we present a novel rule-based XAI strategy (including pre-processing, knowledge-extraction and functional validation) for finding biologically relevant sequential patterns from longitudinal human gene expression data (GED). To illustrate the performance of our pipeline, we work on in vivo temporal GED collected within the course of a long-term dietary intervention in 57 subjects with obesity (GSE77962). As validation populations, we employ three independent datasets following the same experimental design. As a result, we validate primarily extracted gene patterns and prove the goodness of our strategy for the mining of biologically relevant gene-gene temporal relations. Our whole pipeline has been gathered under open-source software and could be easily extended to other human temporal GED applications.


Assuntos
Biologia Computacional/métodos , Mineração de Dados/métodos , Perfilação da Expressão Gênica/métodos , Algoritmos , Inteligência Artificial/tendências , Bases de Dados Genéticas , Expressão Gênica/genética , Humanos , Estudos Longitudinais , Aprendizado de Máquina , Obesidade/genética , Software , Transcriptoma/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...