Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Toxicol Appl Pharmacol ; 475: 116627, 2023 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-37453479

RESUMO

SMARCA2 and SMARCA4 are the ATPases of the SWI/SNF chromatin remodeling complex, which play a significant role in regulating transcriptional activity and DNA repair in cells. SMARCA2 has become an appealing synthetic-lethal, therapeutic target in oncology, as mutational loss of SMARCA4 in many cancers leads to a functional dependency on residual SMARCA2 activity. Thus, for therapeutic development, an important step is understanding any potential safety target-associated liabilities of SMARCA2 inhibition. To best mimic a SMARCA2 therapeutic, a tamoxifen-inducible (TAMi) conditional knockout (cKO) rat was developed using CRISPR technology to understand the safety profile of Smarca2 genetic ablation in a model system that avoids potential juvenile and developmental phenotypes. As the rat is the prototypical rodent species utilized in toxicology studies, a comprehensive toxicological and pathological assessment was conducted in both heterozygote and homozygous knockout rats at timepoints up to 28 days, alongside relevant corresponding controls. To our knowledge, this represents the first TAMi cKO rat model utilized for safety assessment evaluations. No significant target-associated phenotypes were observed when Smarca2 was ablated in mature (11- to 15-week-old) rats; however subsequent induction of SMARCA4 was evident that could indicate potential compensatory activity. Similar to mouse models, rat CreERT2-transgene and TAMi toxicities were characterized to avoid confounding study interpretation. In summary, a lack of significant safety findings in Smarca2 cKO rats highlights the potential for therapeutics targeting selective SMARCA2 ATPase activity; such therapies are predicted to be tolerated in patients without eliciting significant on-target toxicities.


Assuntos
Neoplasias , Tamoxifeno , Camundongos , Ratos , Animais , Tamoxifeno/toxicidade , Adenosina Trifosfatases , Mutação
2.
Methods Mol Biol ; 2631: 135-153, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36995666

RESUMO

Generation of transgenic mice by direct microinjection of foreign DNA into fertilized ova has become a routine technique in biomedical research. It remains an essential tool for studying gene expression, developmental biology, genetic disease models, and their therapies. However, the random integration of foreign DNA into the host genome that is inherent to this technology can lead to confounding effects associated with insertional mutagenesis and transgene silencing. Locations of most transgenic lines remain unknown because the methods are often burdensome (Nicholls et al., G3: Genes Genomes Genetics 9:1481-1486, 2019) or have limitations (Goodwin et al., Genome Research 29:494-505, 2019). Here, we present a method that we call Adaptive Sampling Insertion Site Sequencing (ASIS-Seq) to locate transgene integration sites using targeted sequencing on Oxford Nanopore Technologies' (ONT) sequencers. ASIS-Seq requires only about 3 ug of genomic DNA, 3 hours of hands-on sample preparation time, and 3 days of sequencing time to locate transgenes in a host genome.


Assuntos
Nanoporos , Camundongos , Animais , Sequenciamento de Nucleotídeos em Larga Escala , Genoma , Sequência de Bases , Transgenes , Camundongos Transgênicos , Análise de Sequência de DNA
3.
Heliyon ; 9(3): e14238, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36950615

RESUMO

The ability of stem cells to rapidly proliferate and differentiate is integral to the steady-state maintenance of tissues with high turnover such as the blood and intestine. Mutations that alter these processes can cause primary immunodeficiencies, malignancies and defects in barrier function. The Rho-kinases, Rock1 and Rock2, regulate cell shape and cytoskeletal rearrangement, activities essential to mitosis. Here, we use inducible gene targeting to ablate Rock1 and Rock2 in adult mice, and identify an obligate requirement for these enzymes in the preservation of the hematopoietic and gastrointestinal systems. Hematopoietic cell progenitors devoid of Rho-kinases display cell cycle arrest, blocking the differentiation to mature blood lineages. Similarly, these mice exhibit impaired epithelial cell renewal in the small intestine, which is ultimately fatal. Our data reveal a novel role for these kinases in the proliferation and viability of stem cells and their progenitors, which is vital to maintaining the steady-state integrity of these organ systems.

4.
Mol Biol Rep ; 49(4): 3281-3288, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35107736

RESUMO

INTRODUCTION: Gene targeting in mouse ES cells replaces or modifies genes of interest; conditional alleles, reporter knock-ins, and amino acid changes are common examples of how gene targeting is used. For example, enhanced green fluorescent protein or Cre recombinase is placed under the control of endogenous genes to define promoter expression patterns. METHODS AND RESULTS: The most important step in the process is to demonstrate that a gene targeting vector is correctly integrated in the genome at the desired chromosomal location. The rapid identification of correctly targeted ES cell clones is facilitated by proper targeting vector construction, rapid screening procedures, and advances in cell culture. Here, we optimized and functionally linked magnetic activated cell sorting (MACS) technology as well as multiplex droplet digital PCR (ddPCR) to our ES cell screening process to achieve a greater than 60% assurance that ES clones are correctly targeted. In a further refinement of the process, drug selection cassettes are removed from ES cells with adenovirus technology. We describe this improved workflow and illustrate the reduction in time between therapeutic target identification and experimental validation. CONCLUSION: In sum, we describe a novel and effective implementation of ddPCR, multiMACS, and adenovirus recombinase into a streamlined screening workflow that significantly reduces timelines for gene targeting in mouse ES cells.


Assuntos
Células-Tronco Embrionárias , Vetores Genéticos , Alelos , Animais , Células-Tronco Embrionárias/metabolismo , Marcação de Genes/métodos , Vetores Genéticos/genética , Genótipo , Camundongos
5.
PLoS One ; 16(1): e0244439, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33444326

RESUMO

Systemic Lupus Erythematosus (SLE) is a chronic autoimmune disease representing a serious unmet medical need. The disease is associated with the loss of self-tolerance and exaggerated B cell activation, resulting in autoantibody production and the formation of immune complexes that accumulate in the kidney, causing glomerulonephritis. TLR7, an important mediator of the innate immune response, drives the expression of type-1 interferon (IFN), which leads to expression of type-1 IFN induced genes and aggravates lupus pathology. Because the lysosomal peptide symporter slc15a4 is critically required for type-1 interferon production by pDC, and for certain B cell functions in response to TLR7 and TLR9 signals, we considered it as a potential target for pharmacological intervention in SLE. We deleted the slc15a4 gene in C57BL/6, NZB, and NZW mice and found that pristane-challenged slc15a4-/- mice in the C57BL/6 background and lupus prone slc15a4-/- NZB/W F1 mice were both completely protected from lupus like disease. In the NZB/W F1 model, protection persisted even when disease development was accelerated with an adenovirus encoding IFNα, emphasizing a broad role of slc15a4 in disease initiation. Our results establish a non-redundant function of slc15a4 in regulating both innate and adaptive components of the immune response in SLE pathobiology and suggest that it may be an attractive drug target.


Assuntos
Lúpus Eritematoso Sistêmico/patologia , Proteínas de Membrana Transportadoras/metabolismo , Animais , Quimiocinas/metabolismo , Citocinas/metabolismo , Células Dendríticas/citologia , Células Dendríticas/efeitos dos fármacos , Células Dendríticas/metabolismo , Imidazóis/farmacologia , Interferon-alfa/genética , Interferon-alfa/metabolismo , Interferon-alfa/farmacologia , Lúpus Eritematoso Sistêmico/metabolismo , Lúpus Eritematoso Sistêmico/mortalidade , Proteínas de Membrana Transportadoras/deficiência , Proteínas de Membrana Transportadoras/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos NZB , Camundongos Knockout , Taxa de Sobrevida , Terpenos/farmacologia , Receptor 7 Toll-Like/agonistas , Receptor 7 Toll-Like/metabolismo , Receptor Toll-Like 9/metabolismo
6.
Methods Mol Biol ; 1874: 273-294, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30353520

RESUMO

Since the first knockout rat model was generated with zinc-finger nucleases (ZFNs) by Geurt's group in 2009, the demand for making targeted rat models has increased tremendously. The advent of the clustered regularly interspaced short palindromic repeats-CRISPR associated protein 9 (CRISPR-Cas9) system provides researchers with a more efficient method for producing modified animals, which has since then been developed and applied in rat. Since we established a rat model production system at our facility in 2014, we have consistently generated rat models. Due to differences in physiology and embryology between mouse and rat, species-specific protocols for superovulation conditions, microinjection, and embryo transfer (among others) are required. There are over 100 rat strains, and Sprague Dawley is one of the commonly used outbred strains in biomedical research. In this chapter, we describe in detail a range of topics including donor and recipient preparation, microinjection setup, CRISPR reagent preparation, and oviduct transfer procedures for making rat models in the Sprague Dawley background.


Assuntos
Sistemas CRISPR-Cas , Microinjeções/métodos , Modelos Animais , Oviductos/metabolismo , Animais , Núcleo Celular/genética , Citoplasma/genética , Transferência Embrionária , Feminino , Edição de Genes , Técnicas de Inativação de Genes , Ratos , Ratos Sprague-Dawley , Especificidade da Espécie , Superovulação
7.
Nat Methods ; 15(7): 512-514, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29786090

RESUMO

Despite widespread use of CRISPR, comprehensive data on the frequency and impact of Cas9-mediated off-targets in modified rodents are limited. Here we present deep-sequencing data from 81 genome-editing projects on mouse and rat genomes at 1,423 predicted off-target sites, 32 of which were confirmed, and show that high-fidelity Cas9 versions reduced off-target mutation rates in vivo. Using whole-genome sequencing data from ten mouse embryos, treated with a single guide RNA (sgRNA), and from their genetic parents, we found 43 off-targets, 30 of which were predicted by an adapted version of GUIDE-seq.


Assuntos
Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Engenharia Genética , Genômica/métodos , Animais , Linhagem Celular , Feminino , Masculino , Camundongos , Reação em Cadeia da Polimerase Multiplex/métodos , RNA/genética , Ratos , Sequenciamento Completo do Genoma/métodos
8.
Transgenic Res ; 25(4): 527-31, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-26852382

RESUMO

Embryonic stem (ES) cells from a C57BL/6N (B6N) background injected into B6(Cg)-Tyrc-2J/J (B6-albino) recipient blastocysts are commonly used for generating genetically modified mouse models. To understand the influence of the recipient blastocyst strain on germline transmission, BALB/cAnNTac and B6-albino germline transmission rates were compared using the C57BL6/N-derived C2 ES cell line. A total of 92 ES cell clones from 27 constructs were injected. We compared blastocyst yield, birth rate, chimera formation rate, and high-percentage (>50 %) male chimera formation rate. For germline transmission, we analyzed 24 clones from 19 constructs, which generated high-percentage male chimeras from both donor strains. B6-albino hosts resulted in higher mean blastocyst yields per donor than did BALB/c ones (3.6 vs. 2.5). However, BALB/c hosts resulted in a higher birth rate than B6-albino ones (36 vs. 27 %), a higher chimera formation rate (50 vs. 42 %), a higher high-percentage male chimera rate (10 vs. 8 %), and a higher germline transmission rate (65 vs. 49 %), respectively. Our data suggest that BALB/c is a suitable blastocyst host strain for C2 ES cells and has an advantage over the B6-albino strain for receiving the injection of C2 ES cells.


Assuntos
Blastocisto/fisiologia , Células-Tronco Embrionárias , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Animais , Feminino , Células Germinativas , Masculino , Camundongos Transgênicos , Microinjeções
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...