Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
Cancer Sci ; 115(5): 1505-1519, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38476010

RESUMO

The fibrotic tumor microenvironment is a pivotal therapeutic target. Nintedanib, a clinically approved multikinase antifibrotic inhibitor, is effective against lung adenocarcinoma (ADC) but not squamous cell carcinoma (SCC). Previous studies have implicated the secretome of tumor-associated fibroblasts (TAFs) in the selective effects of nintedanib in ADC, but the driving factor(s) remained unidentified. Here we examined the role of tissue inhibitor of metalloproteinase-1 (TIMP-1), a tumor-promoting cytokine overproduced in ADC-TAFs. To this aim, we combined genetic approaches with in vitro and in vivo preclinical models based on patient-derived TAFs. Nintedanib reduced TIMP-1 production more efficiently in ADC-TAFs than SCC-TAFs through a SMAD3-dependent mechanism. Cell culture experiments indicated that silencing TIMP1 in ADC-TAFs abolished the therapeutic effects of nintedanib on cancer cell growth and invasion, which were otherwise enhanced by the TAF secretome. Consistently, co-injecting ADC cells with TIMP1-knockdown ADC-TAFs into immunocompromised mice elicited a less effective reduction of tumor growth and invasion under nintedanib treatment compared to tumors bearing unmodified fibroblasts. Our results unveil a key mechanism underlying the selective mode of action of nintedanib in ADC based on the excessive production of TIMP-1 in ADC-TAFs. We further pinpoint reduced SMAD3 expression and consequent limited TIMP-1 production in SCC-TAFs as key for the resistance of SCC to nintedanib. These observations strongly support the emerging role of TIMP-1 as a critical regulator of therapy response in solid tumors.


Assuntos
Adenocarcinoma de Pulmão , Fibroblastos Associados a Câncer , Indóis , Neoplasias Pulmonares , Proteína Smad3 , Inibidor Tecidual de Metaloproteinase-1 , Animais , Fibroblastos Associados a Câncer/metabolismo , Fibroblastos Associados a Câncer/efeitos dos fármacos , Humanos , Inibidor Tecidual de Metaloproteinase-1/metabolismo , Inibidor Tecidual de Metaloproteinase-1/genética , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/genética , Camundongos , Indóis/farmacologia , Indóis/uso terapêutico , Adenocarcinoma de Pulmão/tratamento farmacológico , Adenocarcinoma de Pulmão/patologia , Adenocarcinoma de Pulmão/metabolismo , Adenocarcinoma de Pulmão/genética , Proteína Smad3/metabolismo , Linhagem Celular Tumoral , Microambiente Tumoral/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto , Proliferação de Células/efeitos dos fármacos , Carcinoma de Células Escamosas/tratamento farmacológico , Carcinoma de Células Escamosas/patologia , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/genética , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Feminino
2.
Cancers (Basel) ; 15(8)2023 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-37190331

RESUMO

Mechanical changes in tumors have long been linked to increased malignancy and therapy resistance and attributed to mechanical changes in the tumor extracellular matrix (ECM). However, to the best of our knowledge, there have been no mechanical studies on decellularized tumors. Here, we studied the biochemical and mechanical progression of the tumor ECM in two models of lung metastases: lung carcinoma (CAR) and melanoma (MEL). We decellularized the metastatic lung sections, measured the micromechanics of the tumor ECM, and stained the sections for ECM proteins, proliferation, and cell death markers. The same methodology was applied to MEL mice treated with the clinically approved anti-fibrotic drug nintedanib. When compared to healthy ECM (~0.40 kPa), CAR and MEL lung macrometastases produced a highly dense and stiff ECM (1.79 ± 1.32 kPa, CAR and 6.39 ± 3.37 kPa, MEL). Fibronectin was overexpressed from the early stages (~118%) to developed macrometastases (~260%) in both models. Surprisingly, nintedanib caused a 4-fold increase in ECM-occupied tumor area (5.1 ± 1.6% to 18.6 ± 8.9%) and a 2-fold in-crease in ECM stiffness (6.39 ± 3.37 kPa to 12.35 ± 5.74 kPa). This increase in stiffness strongly correlated with an increase in necrosis, which reveals a potential link between tumor hypoxia and ECM deposition and stiffness. Our findings highlight fibronectin and tumor ECM mechanics as attractive targets in cancer therapy and support the need to identify new anti-fibrotic drugs to abrogate aberrant ECM mechanics in metastases.

3.
Mod Pathol ; 36(7): 100155, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36918057

RESUMO

Fibrillar collagens are the most abundant extracellular matrix components in non-small cell lung cancer (NSCLC). However, the potential of collagen fiber descriptors as a source of clinically relevant biomarkers in NSCLC is largely unknown. Similarly, our understanding of the aberrant collagen organization and associated tumor-promoting effects is very scarce. To address these limitations, we identified a digital pathology approach that can be easily implemented in pathology units based on CT-FIRE software (version 2; https://loci.wisc.edu/software/ctfire) analysis of Picrosirius red (PSR) stains of fibrillar collagens imaged with polarized light (PL). CT-FIRE settings were pre-optimized to assess a panel of collagen fiber descriptors in PSR-PL images of tissue microarrays from surgical NSCLC patients (106 adenocarcinomas [ADC] and 89 squamous cell carcinomas [SCC]). Using this approach, we identified straightness as the single high-accuracy diagnostic collagen fiber descriptor (average area under the curve = 0.92) and fiber density as the single descriptor consistently associated with a poor prognosis in both ADC and SCC independently of the gold standard based on the TNM staging (hazard ratio, 2.69; 95% CI, 1.55-4.66; P < .001). Moreover, we found that collagen fibers were markedly straighter, longer, and more aligned in tumor samples compared to paired samples from uninvolved pulmonary tissue, particularly in ADC, which is indicative of increased tumor stiffening. Consistently, we observed an increase in a panel of stiffness-associated processes in the high collagen fiber density patient group selectively in ADC, including venous/lymphatic invasion, fibroblast activation (α-smooth muscle actin), and immune evasion (programmed death-ligand 1). Similarly, a transcriptional correlation analysis supported the potential involvement of the major YAP/TAZ pathway in ADC. Our results provide a proof-of-principle to use CT-FIRE analysis of PSR-PL images to assess new collagen fiber-based diagnostic and prognostic biomarkers in pathology units, which may improve the clinical management of patients with surgical NSCLC. Our findings also unveil an aberrant stiff microenvironment in lung ADC that may foster immune evasion and dissemination, encouraging future work to identify therapeutic opportunities.


Assuntos
Adenocarcinoma , Carcinoma Pulmonar de Células não Pequenas , Carcinoma de Células Escamosas , Neoplasias Pulmonares , Humanos , Neoplasias Pulmonares/metabolismo , Carcinoma Pulmonar de Células não Pequenas/patologia , Prognóstico , Colágenos Fibrilares/análise , Colágenos Fibrilares/uso terapêutico , Adenocarcinoma/patologia , Colágeno , Carcinoma de Células Escamosas/patologia , Microambiente Tumoral
4.
Br J Cancer ; 128(6): 967-981, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36572730

RESUMO

BACKGROUND: The TGF-ß1 transcription factor SMAD3 is epigenetically repressed in tumour-associated fibroblasts (TAFs) from lung squamous cell carcinoma (SCC) but not adenocarcinoma (ADC) patients, which elicits a compensatory increase in SMAD2 that renders SCC-TAFs less fibrotic. Here we examined the effects of altered SMAD2/3 in fibroblast migration and its impact on the desmoplastic stroma formation in lung cancer. METHODS: We used a microfluidic device to examine descriptors of early protrusions and subsequent migration in 3D collagen gels upon knocking down SMAD2 or SMAD3 by shRNA in control fibroblasts and TAFs. RESULTS: High SMAD3 conditions as in shSMAD2 fibroblasts and ADC-TAFs exhibited a migratory advantage in terms of protrusions (fewer and longer) and migration (faster and more directional) selectively without TGF-ß1 along with Erk1/2 hyperactivation. This enhanced migration was abrogated by TGF-ß1 as well as low glucose medium and the MEK inhibitor Trametinib. In contrast, high SMAD2 fibroblasts were poorly responsive to TGF-ß1, high glucose and Trametinib, exhibiting impaired migration in all conditions. CONCLUSIONS: The basal migration advantage of high SMAD3 fibroblasts provides a straightforward mechanism underlying the larger accumulation of TAFs previously reported in ADC compared to SCC. Moreover, our results encourage using MEK inhibitors in ADC-TAFs but not SCC-TAFs.


Assuntos
Adenocarcinoma de Pulmão , Adenocarcinoma , Fibroblastos Associados a Câncer , Neoplasias Pulmonares , Humanos , Adenocarcinoma/patologia , Fibroblastos Associados a Câncer/metabolismo , Colágeno , Fibroblastos/metabolismo , Glucose/farmacologia , Neoplasias Pulmonares/patologia , Quinases de Proteína Quinase Ativadas por Mitógeno , Proteína Smad2/metabolismo , Proteína Smad3/metabolismo , Fator de Crescimento Transformador beta1/metabolismo
5.
Matrix Biol ; 111: 207-225, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35787446

RESUMO

Tissue inhibitor of metalloproteinase-1 (TIMP-1) is an important regulator of extracellular matrix turnover that has been traditionally regarded as a potential tumor suppressor owing to its inhibitory effects of matrix metalloproteinases. Intriguingly, this interpretation has been challenged by the consistent observation that increased expression of TIMP-1 is associated with poor prognosis in virtually all cancer types including lung cancer, supporting a tumor-promoting function. However, how TIMP-1 is dysregulated within the tumor microenvironment and how it drives tumor progression in lung cancer is poorly understood. We analyzed the expression of TIMP-1 and its cell surface receptor CD63 in two major lung cancer subtypes: lung adenocarcinoma (ADC) and squamous cell carcinoma (SCC), and defined the tumor-promoting effects of their interaction. We found that TIMP-1 is aberrantly overexpressed in tumor-associated fibroblasts (TAFs) in ADC compared to SCC. Mechanistically, TIMP-1 overexpression was mediated by the selective hyperactivity of the pro-fibrotic TGF-ß1/SMAD3 pathway in ADC-TAFs. Likewise, CD63 was upregulated in ADC compared to SCC cells. Genetic analyses revealed that TIMP-1 secreted by TGF-ß1-activated ADC-TAFs is both necessary and sufficient to enhance growth and invasion of ADC cancer cells in culture, and that tumor cell expression of CD63 was required for these effects. Consistently, in vivo analyses revealed that ADC cells co-injected with fibroblasts with reduced SMAD3 or TIMP-1 expression into immunocompromised mice attenuated tumor aggressiveness compared to tumors bearing parental fibroblasts. We also found that high TIMP1 and CD63 mRNA levels combined define a stronger prognostic biomarker than TIMP1 alone. Our results identify an excessive stromal TIMP-1 within the tumor microenvironment selectively in lung ADC, and implicate it in a novel tumor-promoting TAF-carcinoma crosstalk, thereby pointing to TIMP-1/CD63 interaction as a novel therapeutic target in lung cancer.


Assuntos
Adenocarcinoma de Pulmão , Fibroblastos Associados a Câncer , Carcinoma de Células Escamosas , Neoplasias Pulmonares , Tetraspanina 30 , Inibidor Tecidual de Metaloproteinase-1 , Adenocarcinoma de Pulmão/genética , Adenocarcinoma de Pulmão/metabolismo , Adenocarcinoma de Pulmão/patologia , Animais , Fibroblastos Associados a Câncer/metabolismo , Carcinoma de Células Escamosas/metabolismo , Fibroblastos/metabolismo , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Camundongos , Tetraspanina 30/metabolismo , Inibidor Tecidual de Metaloproteinase-1/genética , Inibidor Tecidual de Metaloproteinase-1/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Microambiente Tumoral
6.
Int J Mol Sci ; 23(13)2022 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-35805895

RESUMO

Pulmonary fibrosis (PF) is characterized by aberrant extracellular matrix (ECM) deposition, activation of fibroblasts to myofibroblasts and parenchymal disorganization, which have an impact on the biomechanical traits of the lung. In this context, the balance between matrix metalloproteinases (MMPs) and their tissue inhibitors of metalloproteinases (TIMPs) is lost. Interestingly, several MMPs are overexpressed during PF and exhibit a clear profibrotic role (MMP-2, -3, -8, -11, -12 and -28), but a few are antifibrotic (MMP-19), have both profibrotic and antifibrotic capacity (MMP7), or execute an unclear (MMP-1, -9, -10, -13, -14) or unknown function. TIMPs are also overexpressed in PF; hence, the modulation and function of MMPs and TIMP are more complex than expected. EMMPRIN/CD147 (also known as basigin) is a transmembrane glycoprotein from the immunoglobulin superfamily (IgSF) that was first described to induce MMP activity in fibroblasts. It also interacts with other molecules to execute non-related MMP aactions well-described in cancer progression, migration, and invasion. Emerging evidence strongly suggests that CD147 plays a key role in PF not only by MMP induction but also by stimulating fibroblast myofibroblast transition. In this review, we study the structure and function of MMPs, TIMPs and CD147 in PF and their complex crosstalk between them.


Assuntos
Basigina , Fibrose Pulmonar , Matriz Extracelular/patologia , Humanos , Metaloproteinases da Matriz , Fibrose Pulmonar/tratamento farmacológico , Fibrose Pulmonar/patologia , Inibidores Teciduais de Metaloproteinases
7.
Cancers (Basel) ; 13(15)2021 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-34359678

RESUMO

Lung cancer is the leading cause of cancer-related death worldwide. The desmoplastic stroma of lung cancer and other solid tumors is rich in tumor-associated fibroblasts (TAFs) exhibiting an activated/myofibroblast-like phenotype. There is growing awareness that TAFs support key steps of tumor progression and are epigenetically reprogrammed compared to healthy fibroblasts. Although the mechanisms underlying such epigenetic reprogramming are incompletely understood, there is increasing evidence that they involve interactions with either cancer cells, pro-fibrotic cytokines such as TGF-ß, the stiffening of the surrounding extracellular matrix, smoking cigarette particles and other environmental cues. These aberrant interactions elicit a global DNA hypomethylation and a selective transcriptional repression through hypermethylation of the TGF-ß transcription factor SMAD3 in lung TAFs. Likewise, similar DNA methylation changes have been reported in TAFs from other cancer types, as well as histone core modifications and altered microRNA expression. In this review we summarize the evidence of the epigenetic reprogramming of TAFs, how this reprogramming contributes to the acquisition and maintenance of a tumor-promoting phenotype, and how it provides novel venues for therapeutic intervention, with a special focus on lung TAFs.

8.
Cancer Lett ; 507: 1-12, 2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-33684534

RESUMO

Large cell carcinoma (LCC) is a rare and aggressive lung cancer subtype with poor prognosis and no targeted therapies. Tumor-associated fibroblasts (TAFs) derived from LCC tumors exhibit premature senescence, and coculture of pulmonary fibroblasts with LCC cell lines selectively induces fibroblast senescence, which in turn drives LCC cell growth and invasion. Here we identify MMP1 as overexpressed specifically in LCC cell lines, and we show that expression of MMP1 by LCC cells is necessary for induction of fibroblast senescence and consequent tumor promotion in both cell culture and mouse models. We also show that MMP1, in combination with TGF-ß1, is sufficient to induce fibroblast senescence and consequent LCC promotion. Furthermore, we implicate PAR-1 and oxidative stress in MMP1/TGF-ß1-induced TAF senescence. Our results establish an entirely new role for MMP1 in cancer, and support a novel therapeutic strategy in LCC based on targeting senescent TAFs.


Assuntos
Fibroblastos Associados a Câncer/enzimologia , Carcinoma de Células Grandes/enzimologia , Proliferação de Células , Senescência Celular , Neoplasias Pulmonares/enzimologia , Metaloproteinase 1 da Matriz/metabolismo , Animais , Fibroblastos Associados a Câncer/patologia , Carcinoma de Células Grandes/genética , Carcinoma de Células Grandes/patologia , Linhagem Celular Tumoral , Técnicas de Cocultura , Progressão da Doença , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Metaloproteinase 1 da Matriz/genética , Camundongos Nus , Estresse Oxidativo , Comunicação Parácrina , Receptor PAR-1/genética , Receptor PAR-1/metabolismo , Transdução de Sinais , Fator de Crescimento Transformador beta1/genética , Fator de Crescimento Transformador beta1/metabolismo , Carga Tumoral
9.
Int J Mol Sci ; 21(22)2020 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-33182538

RESUMO

Pro-inflammatory cytokines like interleukin-1ß (IL-1ß) are upregulated during early responses to tissue damage and are expected to transiently compromise the mechanical microenvironment. Fibroblasts are key regulators of tissue mechanics in the lungs and other organs. However, the effects of IL-1ß on fibroblast mechanics and functions remain unclear. Here we treated human pulmonary fibroblasts from control donors with IL-1ß and used Atomic Force Microscopy to unveil that IL-1ß significantly reduces the stiffness of fibroblasts concomitantly with a downregulation of filamentous actin (F-actin) and alpha-smooth muscle (α-SMA). Likewise, COL1A1 mRNA was reduced, whereas that of collagenases MMP1 and MMP2 were upregulated, favoring a reduction of type-I collagen. These mechanobiology changes were functionally associated with reduced proliferation and enhanced migration upon IL-1ß stimulation, which could facilitate lung repair by drawing fibroblasts to sites of tissue damage. Our observations reveal that IL-1ß may reduce local tissue rigidity by acting both intracellularly and extracellularly through the downregulation of fibroblast contractility and type I collagen deposition, respectively. These IL-1ß-dependent mechanical effects may enhance lung repair further by locally increasing pulmonary tissue compliance to preserve normal lung distension and function. Moreover, our results support that IL-1ß provides innate anti-fibrotic protection that may be relevant during the early stages of lung repair.


Assuntos
Interleucina-1beta/fisiologia , Pulmão/fisiologia , Actinas/metabolismo , Adolescente , Adulto , Fenômenos Biomecânicos , Movimento Celular/efeitos dos fármacos , Movimento Celular/fisiologia , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/fisiologia , Células Cultivadas , Colágeno Tipo I/genética , Colágeno Tipo I/metabolismo , Cadeia alfa 1 do Colágeno Tipo I , Colágeno Tipo III/genética , Colágeno Tipo III/metabolismo , Ciclo-Oxigenase 2/metabolismo , Elasticidade/efeitos dos fármacos , Elasticidade/fisiologia , Feminino , Fibroblastos/citologia , Fibroblastos/efeitos dos fármacos , Fibroblastos/fisiologia , Humanos , Interleucina-1beta/farmacologia , Pulmão/citologia , Pulmão/efeitos dos fármacos , Masculino , Microscopia de Força Atômica , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Regeneração/genética , Regeneração/fisiologia , Cicatrização/efeitos dos fármacos , Cicatrização/genética , Cicatrização/fisiologia , Adulto Jovem
10.
Cancer Res ; 80(2): 276-290, 2020 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-31694906

RESUMO

The tumor-promoting fibrotic stroma rich in tumor-associated fibroblasts (TAF) is drawing increased therapeutic attention. Intriguingly, a trial with the antifibrotic drug nintedanib in non-small cell lung cancer reported clinical benefits in adenocarcinoma (ADC) but not squamous cell carcinoma (SCC), even though the stroma is fibrotic in both histotypes. Likewise, we reported that nintedanib inhibited the tumor-promoting fibrotic phenotype of TAFs selectively in ADC. Here we show that tumor fibrosis is actually higher in ADC-TAFs than SCC-TAFs in vitro and patient samples. Mechanistically, the reduced fibrosis and nintedanib response of SCC-TAFs was associated with increased promoter methylation of the profibrotic TGFß transcription factor SMAD3 compared with ADC-TAFs, which elicited a compensatory increase in TGFß1/SMAD2 activation. Consistently, forcing global DNA demethylation of SCC-TAFs with 5-AZA rescued TGFß1/SMAD3 activation, whereas genetic downregulation of SMAD3 in ADC-TAFs and control fibroblasts increased TGFß1/SMAD2 activation, and reduced their fibrotic phenotype and antitumor responses to nintedanib in vitro and in vivo. Our results also support that smoking and/or the anatomic location of SCC in the proximal airways, which are more exposed to cigarette smoke particles, may prime SCC-TAFs to stronger SMAD3 epigenetic repression, because cigarette smoke condensate selectively increased SMAD3 promoter methylation. Our results unveil that the histotype-specific regulation of tumor fibrosis in lung cancer is mediated through differential SMAD3 promoter methylation in TAFs and provide new mechanistic insights on the selective poor response of SCC-TAFs to nintedanib. Moreover, our findings support that patients with ADC may be more responsive to antifibrotic drugs targeting their stromal TGFß1/SMAD3 activation. SIGNIFICANCE: This study implicates the selective epigenetic repression of SMAD3 in SCC-TAFs in the clinical failure of nintedanib in SCC and supports that patients with ADC may benefit from antifibrotic drugs targeting stromal TGFß1/SMAD3.


Assuntos
Adenocarcinoma de Pulmão/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Resistencia a Medicamentos Antineoplásicos/genética , Indóis/farmacologia , Neoplasias Pulmonares/tratamento farmacológico , Proteína Smad3/genética , Adenocarcinoma de Pulmão/genética , Adenocarcinoma de Pulmão/patologia , Adenocarcinoma de Pulmão/cirurgia , Idoso , Idoso de 80 Anos ou mais , Animais , Fibroblastos Associados a Câncer/efeitos dos fármacos , Fibroblastos Associados a Câncer/patologia , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Carcinoma Pulmonar de Células não Pequenas/cirurgia , Estudos de Coortes , Metilação de DNA/genética , Repressão Epigenética , Feminino , Fibrose , Regulação Neoplásica da Expressão Gênica , Humanos , Indóis/uso terapêutico , Pulmão/citologia , Pulmão/efeitos dos fármacos , Pulmão/patologia , Pulmão/cirurgia , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/cirurgia , Masculino , Camundongos , Pessoa de Meia-Idade , Pneumonectomia , Regiões Promotoras Genéticas/genética , Proteína Smad2/genética , Proteína Smad2/metabolismo , Proteína Smad3/metabolismo , Análise Serial de Tecidos , Ensaios Antitumorais Modelo de Xenoenxerto
12.
Lung Cancer ; 135: 151-160, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31446988

RESUMO

OBJECTIVES: Tumor associated fibroblasts (TAFs) are essential contributors of the progression of non-small cell lung cancer (NSCLC). Most lung TAFs exhibit an activated phenotype characterized by the expression of α-SMA and fibrillar collagens. However, the prognostic value of these activation markers in NSCLC remains unclear. MATERIAL AND METHODS: We conducted a quantitative image analysis of α-SMA immunostaining and picrosirius red staining of fibrillar collagens imaged by bright-field and polarized microscopy, respectively, using tissue microarrays with samples from 220 surgical patients, which elicited a percentage of positive staining area for each marker and patient. RESULTS: Kaplan-Meier curves showed that all TAF activation markers were significantly associated with poor survival, and their prognostic value was independent of TNM staging as revealed by multivariate analysis, which elicited an adjusted increased risk of death after 3 years of 129% and 94% for fibrillar collagens imaged with bright-field (p = 0.004) and polarized light (p = 0.003), respectively, and of 89% for α-SMA (p = 0.009). We also found a significant association between all TAF activation markers and tumor necrosis, which is often indicative of hypoxia, supporting a pathologic link between tumor desmoplasia and necrosis/hypoxia. CONCLUSIONS: Our findings identify patients with large histologic coverage of fibrillar collagens and α-SMA + TAFs to be at higher risk of recurrence and death, supporting that they could be considered for adjuvant therapy.


Assuntos
Biomarcadores Tumorais , Fibroblastos Associados a Câncer/metabolismo , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/patologia , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Idoso , Idoso de 80 Anos ou mais , Fibroblastos Associados a Câncer/patologia , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/mortalidade , Feminino , Expressão Gênica , Humanos , Imuno-Histoquímica , Estimativa de Kaplan-Meier , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/mortalidade , Masculino , Pessoa de Meia-Idade , Estadiamento de Neoplasias , Prognóstico
13.
Int J Cancer ; 145(11): 3064-3077, 2019 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-31032902

RESUMO

Myofibroblasts are a population of highly contractile fibroblasts that express and require the activity of the transcription factor Snail1. Cancer-associated fibroblasts (CAFs) correlate with low survival of cancer patients when present in the stroma of primary tumors. Remarkably, the presence of myofibroblastic CAFs (which express Snail1) creates mechanical properties in the tumor microenvironment that support metastasis. However, therapeutic blockage of fibroblast activity in patients with cancer is a double-edged sword, as normal fibroblast activities often restrict tumor cell invasion. We used fibroblasts depleted of Snail1 or protein arginine methyltransferases 1 and 4 (PRMT1/-4) to identify specific epigenetic modifications induced by TGFß/Snail1. Furthermore, we analyzed the in vivo efficiency of methyltransferase inhibitors using mouse models of wound healing and metastasis, as well as fibroblasts isolated from patients with idiopathic pulmonary fibrosis (IPF). Mechanistically, TGFß-induced Snail1 promotes the epigenetic mark of asymmetrically dimethylated arginine. Critically, we found that inhibitors of methyltransferases prevent myofibroblast activity (but not regular fibroblast activity) in the extracellular matrix, both in cell culture and in vivo. In a mouse breast cancer model, the inhibitor sinefungin reduces both the myofibroblast activity in the tumor stroma and the metastatic burden in the lung. Two distinct inhibitors effectively blocked the exacerbated myofibroblast activity of patient-derived IPF fibroblasts. Our data reveal epigenetic regulation of myofibroblast transdifferentiation in both wound healing and in disease (fibrosis and breast cancer). Thus, methyltransferase inhibitors are good candidates as therapeutic reagents for these diseases.


Assuntos
Neoplasias da Mama/tratamento farmacológico , Inibidores Enzimáticos/administração & dosagem , Fibrose Pulmonar Idiopática/tratamento farmacológico , Neoplasias Pulmonares/secundário , Metiltransferases/antagonistas & inibidores , Miofibroblastos/efeitos dos fármacos , Fatores de Transcrição da Família Snail/genética , Adenosina/administração & dosagem , Adenosina/análogos & derivados , Adenosina/farmacologia , Animais , Neoplasias da Mama/enzimologia , Fibroblastos Associados a Câncer/citologia , Fibroblastos Associados a Câncer/efeitos dos fármacos , Fibroblastos Associados a Câncer/metabolismo , Linhagem Celular Tumoral , Transdiferenciação Celular , Células Cultivadas , Modelos Animais de Doenças , Inibidores Enzimáticos/farmacologia , Epigênese Genética , Feminino , Deleção de Genes , Humanos , Fibrose Pulmonar Idiopática/enzimologia , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/enzimologia , Metiltransferases/genética , Camundongos , Miofibroblastos/citologia , Miofibroblastos/enzimologia , Fatores de Transcrição da Família Snail/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Microambiente Tumoral , Ensaios Antitumorais Modelo de Xenoenxerto
14.
Semin Cell Dev Biol ; 73: 71-81, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28743639

RESUMO

There is growing recognition that the mechanical interactions between cells and their local extracellular matrix (ECM) are central regulators of tissue development, homeostasis, repair and disease progression. The unique ability of atomic force microscopy (AFM) to probe quantitatively mechanical properties and forces at the nanometer or micrometer scales in all kinds of biological samples has been instrumental in the recent advances in cell and tissue mechanics. In this review we illustrate how AFM has provided important insights on our current understanding of the mechanobiology of cells, ECM and cell-ECM bidirectional interactions, particularly in the context of soft acinar tissues like the mammary gland or pulmonary tissue. AFM measurements have revealed that intrinsic cell micromechanics is cell-type specific, and have underscored the prominent role of ß1 integrin/FAK(Y397) signaling and the actomyosin cytoskeleton in the mechanoresponses of both parenchymal and stromal cells. Moreover AFM has unveiled that the micromechanics of the ECM obtained by tissue decellularization is unique for each anatomical compartment, which may support both its specific function and cell differentiation. AFM has also enabled identifying critical mechanoregulatory proteins involved in branching morphogenesis (MMP14) and acinar differentiation (α3ß1 integrin), and has clarified the role of altered tissue mechanics and architecture in a variety of pathologic conditions. Critical technical issues of AFM mechanical measurements like tip geometry effects are also discussed.


Assuntos
Matriz Extracelular/metabolismo , Matriz Extracelular/ultraestrutura , Microscopia de Força Atômica , Animais , Fenômenos Biomecânicos , Humanos
15.
Int J Mol Sci ; 18(11)2017 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-29144435

RESUMO

Idiopathic pulmonary fibrosis (IPF) is an aggressive disease in which normal lung parenchyma is replaced by a stiff dysfunctional scar rich in activated fibroblasts and collagen-I. We examined how the mechanochemical pro-fibrotic microenvironment provided by matrix stiffening and TGF-ß1 cooperates in the transcriptional control of collagen homeostasis in normal and fibrotic conditions. For this purpose we cultured fibroblasts from IPF patients or control donors on hydrogels with tunable elasticity, including 3D collagen-I gels and 2D polyacrylamide (PAA) gels. We found that TGF-ß1 consistently increased COL1A1 while decreasing MMP1 mRNA levels in hydrogels exhibiting pre-fibrotic or fibrotic-like rigidities concomitantly with an enhanced activation of the FAK/Akt pathway, whereas FAK depletion was sufficient to abrogate these effects. We also demonstrate a synergy between matrix stiffening and TGF-ß1 that was positive for COL1A1 and negative for MMP1. Remarkably, the COL1A1 expression upregulation elicited by TGF-ß1 alone or synergistically with matrix stiffening were higher in IPF-fibroblasts compared to control fibroblasts in association with larger FAK and Akt activities in the former cells. These findings provide new insights on how matrix stiffening and TGF-ß1 cooperate to elicit excessive collagen-I deposition in IPF, and support a major role of the FAK/Akt pathway in this cooperation.


Assuntos
Colágeno Tipo I/metabolismo , Módulo de Elasticidade , Matriz Extracelular/metabolismo , Fibroblastos/metabolismo , Fibrose Pulmonar Idiopática/metabolismo , Linhagem Celular , Células Cultivadas , Colágeno Tipo I/genética , Cadeia alfa 1 do Colágeno Tipo I , Fibroblastos/efeitos dos fármacos , Proteína-Tirosina Quinases de Adesão Focal/metabolismo , Homeostase , Humanos , Fibrose Pulmonar Idiopática/patologia , Metaloproteinase 1 da Matriz/genética , Metaloproteinase 1 da Matriz/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Fator de Crescimento Transformador beta1/farmacologia , Regulação para Cima
16.
Mol Biol Cell ; 28(26): 3741-3755, 2017 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-29046395

RESUMO

The contribution of epithelial-to-mesenchymal transition (EMT) to the profibrotic stiff microenvironment and myofibroblast accumulation in pulmonary fibrosis remains unclear. We examined EMT-competent lung epithelial cells and lung fibroblasts from control (fibrosis-free) donors or patients with idiopathic pulmonary fibrosis (IPF), which is a very aggressive fibrotic disorder. Cells were cultured on profibrotic conditions including stiff substrata and TGF-ß1, and analyzed in terms of morphology, stiffness, and expression of EMT/myofibroblast markers and fibrillar collagens. All fibroblasts acquired a robust myofibroblast phenotype on TGF-ß1 stimulation. Yet IPF myofibroblasts exhibited higher stiffness and expression of fibrillar collagens than control fibroblasts, concomitantly with enhanced FAKY397 activity. FAK inhibition was sufficient to decrease fibroblast stiffness and collagen expression, supporting that FAKY397 hyperactivation may underlie the aberrant mechanobiology of IPF fibroblasts. In contrast, cells undergoing EMT failed to reach the values exhibited by IPF myofibroblasts in all parameters examined. Likewise, EMT could be distinguished from nonactivated control fibroblasts, suggesting that EMT does not elicit myofibroblast precursors either. Our data suggest that EMT does not contribute directly to the myofibroblast population, and may contribute to the stiff fibrotic microenvironment through their own stiffness but not their collagen expression. Our results also support that targeting FAKY397 may rescue normal mechanobiology in IPF.


Assuntos
Miofibroblastos/metabolismo , Fibrose Pulmonar/metabolismo , Adulto , Estudos de Casos e Controles , Células Cultivadas , Microambiente Celular/fisiologia , Células Epiteliais/metabolismo , Transição Epitelial-Mesenquimal/genética , Transição Epitelial-Mesenquimal/fisiologia , Epitélio/fisiologia , Fibroblastos/metabolismo , Humanos , Pulmão/metabolismo , Fator de Crescimento Transformador beta1/farmacologia
17.
Nat Cell Biol ; 19(3): 224-237, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28218910

RESUMO

Cancer-associated fibroblasts (CAFs) promote tumour invasion and metastasis. We show that CAFs exert a physical force on cancer cells that enables their collective invasion. Force transmission is mediated by a heterophilic adhesion involving N-cadherin at the CAF membrane and E-cadherin at the cancer cell membrane. This adhesion is mechanically active; when subjected to force it triggers ß-catenin recruitment and adhesion reinforcement dependent on α-catenin/vinculin interaction. Impairment of E-cadherin/N-cadherin adhesion abrogates the ability of CAFs to guide collective cell migration and blocks cancer cell invasion. N-cadherin also mediates repolarization of the CAFs away from the cancer cells. In parallel, nectins and afadin are recruited to the cancer cell/CAF interface and CAF repolarization is afadin dependent. Heterotypic junctions between CAFs and cancer cells are observed in patient-derived material. Together, our findings show that a mechanically active heterophilic adhesion between CAFs and cancer cells enables cooperative tumour invasion.


Assuntos
Caderinas/metabolismo , Fibroblastos Associados a Câncer/metabolismo , Fibroblastos Associados a Câncer/patologia , Neoplasias/patologia , Adenocarcinoma/patologia , Adenocarcinoma de Pulmão , Fenômenos Biomecânicos , Fibroblastos Associados a Câncer/ultraestrutura , Adesão Celular , Moléculas de Adesão Celular/metabolismo , Linhagem Celular Tumoral , Ensaios de Migração Celular , Movimento Celular , Polaridade Celular , Técnicas de Cocultura , Feminino , Humanos , Imageamento Tridimensional , Neoplasias Pulmonares/patologia , Mecanotransdução Celular , Proteínas dos Microfilamentos , Nectinas , Invasividade Neoplásica , Neoplasias/metabolismo , Neoplasias de Células Escamosas/patologia , Pinças Ópticas , Esferoides Celulares/patologia , Neoplasias Vulvares/patologia
18.
Microsc Res Tech ; 80(1): 85-96, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27535539

RESUMO

The increasing recognition that tissue elasticity is an important regulator of cell behavior in normal and pathologic conditions such as fibrosis and cancer has driven the development of cell culture substrata with tunable elasticity. Such development has urged the need to quantify the elastic properties of these cell culture substrata particularly at the nanometer scale, since this is the relevant length scale involved in cell-extracellular matrix (ECM) mechanical interactions. To address this need, we have exploited the versatility of atomic force microscopy to quantify the elastic properties of a variety of cell culture substrata used in mechanobiology studies, including floating collagen gels, ECM-coated polyacrylamide gels, and decellularized tissue sections. In this review we summarize major findings in this field from our group within the context of the state-of-the-art in the field, and provide a critical discussion on the applicability and complementarity of currently available cell culture assays with tunable elasticity. In addition, we briefly describe how the limitations of these assays provide opportunities for future research, which is expected to continue expanding our understanding of the mechanobiological aspects that support both normal and diseased conditions. Microsc. Res. Tech. 80:85-96, 2017. © 2016 Wiley Periodicals, Inc.


Assuntos
Biofísica , Hidrogéis/química , Microscopia de Força Atômica , Resinas Acrílicas/química , Animais , Células Cultivadas , Materiais Revestidos Biocompatíveis/química , Colágeno/ultraestrutura , Biologia Computacional , Elasticidade , Matriz Extracelular/ultraestrutura , Humanos
19.
Oncotarget ; 7(50): 82324-82337, 2016 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-27384989

RESUMO

Senescence in cancer cells acts as a tumor suppressor, whereas in fibroblasts enhances tumor growth. Senescence has been reported in tumor associated fibroblasts (TAFs) from a growing list of cancer subtypes. However, the presence of senescent TAFs in lung cancer remains undefined. We examined senescence in TAFs from primary lung cancer and paired control fibroblasts from unaffected tissue in three major histologic subtypes: adenocarcinoma (ADC), squamous cell carcinoma (SCC) and large cell carcinoma (LCC). Three independent senescence markers (senescence-associated beta-galactosidase, permanent growth arrest and spreading) were consistently observed in cultured LCC-TAFs only, revealing a selective premature senescence. Intriguingly, SCC-TAFs exhibited a poor growth response in the absence of senescence markers, indicating a dysfunctional phenotype rather than senescence. Co-culturing normal fibroblasts with LCC (but not ADC or SCC) cancer cells was sufficient to render fibroblasts senescent through oxidative stress, indicating that senescence in LCC-TAFs is driven by heterotypic signaling. In addition, senescent fibroblasts provided selective growth and invasive advantages to LCC cells in culture compared to normal fibroblasts. Likewise, senescent fibroblasts enhanced tumor growth and lung dissemination of tumor cells when co-injected with LCC cells in nude mice beyond the effects induced by control fibroblasts. These results define the subtype-specific aberrant phenotypes of lung TAFs, thereby challenging the common assumption that lung TAFs are a heterogeneous myofibroblast-like cell population regardless of their subtype. Importantly, because LCC often distinguishes itself in the clinic by its aggressive nature, we argue that senescent TAFs may contribute to the selective aggressive behavior of LCC tumors.


Assuntos
Fibroblastos Associados a Câncer/metabolismo , Carcinoma de Células Grandes/metabolismo , Senescência Celular , Neoplasias Pulmonares/metabolismo , Miofibroblastos/metabolismo , Comunicação Parácrina , Animais , Fibroblastos Associados a Câncer/patologia , Carcinoma de Células Grandes/patologia , Pontos de Checagem do Ciclo Celular , Linhagem Celular Tumoral , Movimento Celular , Forma Celular , Técnicas de Cocultura , Meios de Cultivo Condicionados/metabolismo , Progressão da Doença , Feminino , Humanos , Neoplasias Pulmonares/patologia , Masculino , Camundongos Nus , Pessoa de Meia-Idade , Miofibroblastos/patologia , Invasividade Neoplásica , Estresse Oxidativo , Fenótipo , Transdução de Sinais , Fatores de Tempo , Microambiente Tumoral , beta-Galactosidase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...