Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biol Open ; 4(10): 1229-36, 2015 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-26340943

RESUMO

Higher plant vasculature is characterized by two distinct developmental phases. Initially, a well-defined radial primary pattern is established. In eudicots, this is followed by secondary growth, which involves development of the cambium and is required for efficient water and nutrient transport and wood formation. Regulation of secondary growth involves several phytohormones, and cytokinins have been implicated as key players, particularly in the activation of cell proliferation, but the molecular mechanisms mediating this hormonal control remain unknown. Here we show that the genes encoding the transcription factor AINTEGUMENTA (ANT) and the D-type cyclin CYCD3;1 are expressed in the vascular cambium of Arabidopsis roots, respond to cytokinins and are both required for proper root secondary thickening. Cytokinin regulation of ANT and CYCD3 also occurs during secondary thickening of poplar stems, suggesting this represents a conserved regulatory mechanism.

2.
BMC Genomics ; 14: 744, 2013 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-24176122

RESUMO

BACKGROUND: In the model eukaryote, Saccharomyces cerevisiae, previous experiments have identified those genes that exert the most significant control over cell growth rate. These genes are termed HFC for high flux control. Such genes are overrepresented within pathways controlling the mitotic cell cycle. RESULTS: We postulated that the increase/decrease in growth rate is due to a change in the rate of progression through specific cell cycle steps. We extended and further developed an existing logical model of the yeast cell cycle in order elucidate how the HFC genes modulated progress through the cycle. This model can simulate gene dosage-variation and calculate the cycle time, determine the order and relative speed at which events occur, and predict arrests and failures to correctly execute a step. To experimentally test our model's predictions, we constructed a tetraploid series of deletion mutants for a set of eight genes that control the G2/M transition. This system allowed us to vary gene copy number through more intermediate levels than previous studies and examine the impact of copy-number variation on growth, cell-cycle phenotype, and response to different cellular stresses. CONCLUSIONS: For the majority of strains, the predictions agreed with experimental observations, validating our model and its use for further predictions. Where simulation and experiment diverged, we uncovered both novel tetraploid-specific phenotypes and a switch in the determinative execution point of a key cell-cycle regulator, the Cdc28 kinase, from the G1/S to the S/G2 boundaries.


Assuntos
Variações do Número de Cópias de DNA/genética , Saccharomyces cerevisiae/genética , Antígenos CD28/deficiência , Antígenos CD28/genética , Antígenos CD28/metabolismo , Proteínas de Ciclo Celular/deficiência , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Divisão Celular , Ciclina B/deficiência , Ciclina B/genética , Ciclina B/metabolismo , Fase G2 , Proteínas Quinases Ativadas por Mitógeno/deficiência , Proteínas Quinases Ativadas por Mitógeno/genética , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Modelos Teóricos , Fenótipo , Proteínas Serina-Treonina Quinases/deficiência , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Tirosina Quinases/deficiência , Proteínas Tirosina Quinases/genética , Proteínas Tirosina Quinases/metabolismo , Saccharomyces cerevisiae/crescimento & desenvolvimento , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Tetraploidia
3.
Proc Natl Acad Sci U S A ; 104(36): 14537-42, 2007 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-17726100

RESUMO

Current understanding of the integration of cell division and expansion in the development of plant lateral organs such as leaves is limited. Cell number is established during a mitotic phase, and subsequent growth into a mature organ relies primarily on cell expansion accompanied by endocycles. Here we show that the three Arabidopsis cyclin D3 (CYCD3) genes are expressed in overlapping but distinct patterns in developing lateral organs and the shoot meristem. Triple loss-of-function mutants show that CYCD3 function is essential neither for the mitotic cell cycle nor for morphogenesis. Rather, analysis of mutant and reciprocal overexpression phenotypes shows that CYCD3 function contributes to the control of cell number in developing leaves by regulating the duration of the mitotic phase and timing of the transition to endocycles. Petals, which normally do not endoreduplicate, respond to loss of CYCD3 function with larger cells that initiate endocycles. The phytohormone cytokinin regulates cell division in the shoot meristem and developing leaves and induces CYCD3 expression. Loss of CYCD3 impairs shoot meristem function and leads to reduced cytokinin responses, including the inability to initiate shoots on callus, without affecting endogenous cytokinin levels. We conclude that CYCD3 activity is important for determining cell number in developing lateral organs and the relative contribution of the alternative processes of cell production and cell expansion to overall organ growth, as well as mediating cytokinin effects in apical growth and development.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/citologia , Arabidopsis/metabolismo , Ciclinas/metabolismo , Citocininas/metabolismo , Envelhecimento/fisiologia , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/classificação , Proteínas de Arabidopsis/genética , Ciclo Celular , Proliferação de Células , Tamanho Celular , Ciclinas/classificação , Ciclinas/deficiência , Ciclinas/genética , Flores/genética , Flores/crescimento & desenvolvimento , Flores/metabolismo , Deleção de Genes , Regulação da Expressão Gênica de Plantas , Mutação/genética , Folhas de Planta/genética , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Brotos de Planta/genética , Brotos de Planta/metabolismo , Plantas Geneticamente Modificadas
4.
Mol Cell ; 9(6): 1169-82, 2002 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-12086615

RESUMO

In S. cerevisiae, posttranslational modification by the ubiquitin-like Smt3/SUMO-1 protein is essential for survival, but functions and cellular targets for this modification are largely unknown. We find that one function associated with the Smt3/SUMO-1 isopeptidase Smt4 is to control chromosome cohesion at centromeric regions and that a key Smt3/SUMO-1 substrate underlying this function is Top2, DNA Topoisomerase II. Top2 modification by Smt3/SUMO-1 is misregulated in smt4 strains, and top2 mutants resistant to Smt3/SUMO-1 modification suppress the smt4 cohesion defect. top2 mutants display aberrant chromatid stretching at the centromere in response to mitotic spindle tension and altered chromatid reassociation following microtubule depolymerization. These results suggest Top2 modification by Smt3/SUMO-1 regulates a component of chromatin structure or topology required for centromeric cohesion.


Assuntos
Centrômero/metabolismo , DNA Topoisomerases Tipo II/metabolismo , Endopeptidases/metabolismo , Proteína SUMO-1/metabolismo , Proteínas de Ciclo Celular , Proteínas Cromossômicas não Histona , DNA Topoisomerases Tipo II/genética , Endopeptidases/genética , Proteínas Fúngicas , Proteínas Nucleares/metabolismo , Processamento de Proteína Pós-Traducional , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Coesinas
5.
Genes Dev ; 16(2): 183-97, 2002 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-11799062

RESUMO

A role for the mitotic spindle in the maturation of the kinetochore has not been defined previously. Here we describe the isolation of a novel and conserved essential gene, ASK1, from Saccharomyces cerevisiae involved in this process. ask1 mutants display either G(2)/M arrest or segregation of DNA masses without the separation of sister chromatids, resulting in massive nondisjunction and broken spindles. Ask1 localizes along mitotic spindles and to kinetochores, and cross-links to centromeric DNA. Microtubules are required for Ask1 binding to kinetochores, and are partially required to maintain its association. We found Ask1 is part of a multisubunit complex, DASH, that contains approximately 10 components, including several proteins essential for mitosis including Dam1, Duo1, Spc34, Spc19, and Hsk1. The Ipl1 kinase controls the phosphorylation of Dam1 in the DASH complex and may regulate its function. We propose that DASH is a microtubule-binding complex that is transferred to the kinetochore prior to mitosis, thereby defining a new step in kinetochore maturation.


Assuntos
Proteínas de Arabidopsis , Cinetocoros , Fuso Acromático , Sequência de Aminoácidos , Animais , Sequência de Bases , Cromátides , Primers do DNA , Proteínas Fúngicas/genética , Fase G2 , Genes Essenciais , Genes Fúngicos , Mitose , Dados de Sequência Molecular , Mutação , Fosforilação , Proteínas de Plantas/química , Proteínas de Plantas/genética , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/genética , Homologia de Sequência de Aminoácidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...