Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 829: 154539, 2022 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-35302036

RESUMO

Intensive cultivation and post-harvest vegetable oil production stages are major sources of greenhouse gas (GHG) emissions. Variation between production systems and reporting disparity have resulted in discordance in previous emissions estimates. The aim of this study was to assess global systems-wide variation in GHG emissions resulting from palm, soybean, rapeseed and sunflower oil production. Such an analysis is critical to understand the implications of meeting increasing edible oil demand. To achieve this, we performed a unified re-analysis of life cycle input data from diverse palm, soybean, rapeseed, and sunflower oil production systems, from a saturating search of published literature. The resulting dataset reflects almost 6000 producers in 38 countries, and is representative of over 71% of global vegetable oil production. Across all oil crop systems, median GHG emissions were 3.81 kg CO2e per kg refined oil. Crop specific median emissions ranged from 2.49 kg CO2e for rapeseed oil to 4.25 kg CO2e for soybean oil per kg refined oil. Determination of the carbon cost of agricultural land occupation revealed that carbon storage potential in native compared to agricultural land cover drives variation in production GHG emissions, and indicates that expansion of production in low carbon storage potential land, whilst reforesting areas of high carbon storage potential, could reduce net GHG emissions whilst boosting productivity. Nevertheless, there remains considerable scope to improve sustainability within current production systems, including through increasing yields whilst limiting application of inputs with high carbon footprints, and in the case of palm oil through more widespread adoption of methane capture technologies in processing stages.


Assuntos
Efeito Estufa , Gases de Efeito Estufa , Carbono/análise , Pegada de Carbono , Gases de Efeito Estufa/análise , Óleos de Plantas/análise , Glycine max , Óleo de Girassol/análise
2.
J Trace Elem Med Biol ; 67: 126781, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34015659

RESUMO

BACKGORUND: Cowpea is a crop widely used in developing countries due its rusticity. Besides its rich genotypic variability, most breeding programs do not explore its potential to improve elements uptake. Selenium (Se) is a scarce element in most soils, resulting in its deficiency being common in human diets. This study aimed to evaluate the interaction between biofortification with Se and genotypic variation in cowpea, on the concentrations of Se in roots, leaves + stem and grains. METHODS: Twenty-nine cowpea genotypes were grown in a greenhouse in the absence (control) and presence of Se (12.5 µg Se kg-1 soil) as sodium selenate, in fully randomized scheme. The plants were cultivated until grains harvest. The following variables were determined: roots dry weight (g), leaves + stems dry weight (g), grains dry weight (g), Se concentration (mg kg-1) in roots, leaves + stems and grains, and Se partitioning to shoots and grains. RESULTS: Selenium application increased the Se concentration in roots, leaves + stems and grains in all genotypes. At least twofold variation in grain Se concentration was observed among genotypes. Selenium application did not impair biomass accumulation, including grain dry weight. Genotype "BRS Guariba" had the largest Se concentration in grains and leaves + stems. Genotype MNC04-795 F-158 had the largest partitioning of Se to shoots and grain, due to elevated dry weights of leaves + stems and grain, and high Se concentrations in these tissues. CONCLUSION: This information might be valuable in future breeding programs to select for genotypes with better abilities to accumulate Se in grain to reduce widespread human Se undernutrition.


Assuntos
Vigna , Grão Comestível , Genótipo , Humanos , Ácido Selênico , Selênio , Solo , Vigna/genética
3.
Plant Physiol ; 186(3): 1616-1631, 2021 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-33831190

RESUMO

Magnesium (Mg) and calcium (Ca) are essential mineral nutrients poorly supplied in many human food systems. In grazing livestock, Mg and Ca deficiencies are costly welfare issues. Here, we report a Brassica rapa loss-of-function schengen3 (sgn3) mutant, braA.sgn3.a-1, which accumulates twice as much Mg and a third more Ca in its leaves. We mapped braA.sgn3.a to a single recessive locus using a forward ionomic screen of chemically mutagenized lines with subsequent backcrossing and linked-read sequencing of second back-crossed, second filial generation (BC2F2) segregants. Confocal imaging revealed a disrupted root endodermal diffusion barrier, consistent with SGN3 encoding a receptor-like kinase required for normal formation of Casparian strips, as reported in thale cress (Arabidopsis thaliana). Analysis of the spatial distribution of elements showed elevated extracellular Mg concentrations in leaves of braA.sgn3.a-1, hypothesized to result from preferential export of excessive Mg from cells to ensure suitable cellular concentrations. This work confirms a conserved role of SGN3 in controlling nutrient homeostasis in B. rapa, and reveals mechanisms by which plants are able to deal with perturbed shoot element concentrations resulting from a "leaky" root endodermal barrier. Characterization of variation in leaf Mg and Ca accumulation across a mutagenized population of B. rapa shows promise for using such populations in breeding programs to increase edible concentrations of essential human and animal nutrients.


Assuntos
Brassica rapa/genética , Brassica rapa/metabolismo , Cálcio/análise , Cálcio/metabolismo , Genes Recessivos , Magnésio/análise , Magnésio/metabolismo , Produtos Agrícolas/genética , Produtos Agrícolas/metabolismo , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Variação Genética , Genótipo , Mutação , Folhas de Planta/genética , Folhas de Planta/metabolismo
4.
J Sci Food Agric ; 99(13): 5969-5983, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31215030

RESUMO

BACKGROUND: Selenium (Se) is a nutrient for animals and humans, and is considered beneficial to higher plants. Selenium concentrations are low in most soils, which can result in a lack of Se in plants, and consequently in human diets. Phytic acid (PA) is the main storage form of phosphorus in seeds, and it is able to form insoluble complexes with essential minerals in the monogastric gut. This study aimed to establish optimal levels of Se application to cowpea, with the aim of increasing Se concentrations. The efficiency of agronomic biofortification was evaluated by the application of seven levels of Se (0, 2.5, 5, 10, 20, 40, and 60 g ha-1 ) from two sources (selenate and selenite) to the soil under field conditions in 2016 and 2017. RESULTS: Application of Se as selenate led to greater plant Se concentrations than application as selenite in both leaves and grains. Assuming human cowpea consumption of 54.2 g day-1 , Se application of 20 g ha-1 in 2016 or 10 g ha-1 in 2017 as selenate would have provided a suitable daily intake of Se (between 20 and 55 µg day-1 ) for humans. Phytic acid showed no direct response to Se application. CONCLUSION: Selenate provides greater phytoavailability than selenite. The application of 10 g Se ha-1 of selenate to cowpea plants could provide sufficient seed Se to increase daily human intake by 13-14 µg d-1 . © 2019 Society of Chemical Industry.


Assuntos
Biofortificação/métodos , Ácido Fítico/análise , Ácido Selênico/análise , Ácido Selenioso/análise , Selênio/análise , Vigna/química , Fertilizantes/análise , Ácido Fítico/metabolismo , Folhas de Planta/química , Folhas de Planta/metabolismo , Sementes/química , Sementes/metabolismo , Vigna/metabolismo
5.
Front Plant Sci ; 9: 1487, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30386356

RESUMO

Large nitrogen, phosphorus and potassium fertilizer inputs are used in many crop systems. Identifying genetic loci controlling nutrient accumulation may be useful in crop breeding strategies to increase fertilizer use efficiency and reduce financial and environmental costs. Here, variation in leaf nitrate concentration across a diversity population of 383 genotypes of Brassica napus was characterized. Genetic loci controlling variation in leaf nitrate, phosphorus and potassium concentration were then identified through Associative Transcriptomics using single nucleotide polymorphism (SNP) markers and gene expression markers (GEMs). Leaf nitrate concentration varied over 8-fold across the diversity population. A total of 455 SNP markers were associated with leaf nitrate concentration after false-discovery-rate (FDR) correction. In linkage disequilibrium of highly associated markers are a number of known nitrate transporters and sensors, including a gene thought to mediate expression of the major nitrate transporter NRT1.1. Several genes influencing root and root-hair development co-localize with chromosomal regions associated with leaf P concentration. Orthologs of three ABC-transporters involved in suberin synthesis in roots also co-localize with association peaks for both leaf nitrate and phosphorus. Allelic variation at nearby, highly associated SNPs confers large variation in leaf nitrate and phosphorus concentration. A total of five GEMs associated with leaf K concentration after FDR correction including a GEM that corresponds to an auxin-response family protein. Candidate loci, genes and favorable alleles identified here may prove useful in marker-assisted selection strategies to improve fertilizer use efficiency in B. napus.

6.
Plant Mol Biol Report ; 36(3): 518-529, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30100671

RESUMO

Peanut (Arachis hypogaea), a major source of vegetable oil in many Asian countries, has become an integral part of human diet globally due to its high nutritional properties and option to consume in different forms. In order to meet the demand of vegetable oil, many peanut breeding programs of China have intensified their efforts in increasing oil content in newly bred varieties for reducing the import of edible oils in China. In this context, transcriptome sequencing data generated on 49 peanut cultivars were analyzed to identify candidate genes and develop molecular markers for seed oil content across multiple environments. Transcriptome analysis identified 5458 differentially expressed genes (DEGs) including 2243 positive DEGs and 3215 negative DEGs involved in oil synthesis process. Genome-wide association study identified 48 significant insertion/deletion (InDel) markers associated with seed oil content across five environments. A comparative genomics and transcriptomics analysis detected a total of 147 common gene clusters located in 17 chromosomes. Interestingly, an InDel cluster associated with seed oil content on A03 chromosome was detected in three different environments. Candidate genes identified on A03 form a haplotype, in which variable alleles were found to be different in oil content in an independent population. This locus is important for understanding the genetic control of peanut oil content and may be useful for marker-assisted selection in peanut breeding programs.

7.
Front Plant Sci ; 8: 1968, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29187860

RESUMO

Calcium (Ca) and magnesium (Mg) are essential plant nutrients and vital for human and animal nutrition. Biofortification of crops has previously been suggested to alleviate widespread human Ca and Mg deficiencies. In this study, new candidate genes influencing the leaf accumulation of Ca and Mg were identified in young Brassica napus plants using associative transcriptomics of ionomics datasets. A total of 247 and 166 SNP markers were associated with leaf Ca and Mg concentration, respectively, after false discovery rate correction and removal of SNPs with low second allele frequency. Gene expression markers at similar positions were also associated with leaf Ca and Mg concentration, including loci on chromosomes A10 and C2, within which lie previously identified transporter genes ACA8 and MGT7. Further candidate genes were selected from seven loci and the mineral composition of whole Arabidopsis thaliana shoots were characterized from lines mutated in orthologous genes. Four and two mutant lines had reduced shoot Ca and Mg concentration, respectively, compared to wild type plants. Three of these mutations were found to have tissue specific effects; notably reduced silique Ca in all three such mutant lines. This knowledge could be applied in targeted breeding, with the possibility of increasing Ca and Mg in plant tissue for improving human and livestock nutrition.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...