Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Food Funct ; 14(18): 8186-8200, 2023 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-37599609

RESUMO

Bacterial translocation (BT), with antibiotic use as an inducer, is associated with increased risk of developing multiple inflammatory disorders, and is closely associated with intestinal barrier integrity. Deacetylated konjac glucomannan (DKGM) and konjac oligo-glucomannan (KOGM) are two of the most widely used derivatives in the food industry. They are structurally and physiologically distinct from konjac glucomannan (KGM), and previous studies have confirmed their prebiotic effects. But whether they play a role in antibiotic-induced BT is unknown. Here, we applied an antibiotic cocktail (Abx) to a mouse model and investigated whether and how KGM and its derivatives function in BT and inflammation response amelioration during and after antibiotics, and which intervention plan is more effective. The results showed that KGM and its derivatives all inhibited BT. The colon tissue lesions caused by BT were largely alleviated, and short-chain fatty acid (SCFA) production was highly improved with the supplementation of carbohydrates. The prolonged intervention plan using KGM and its derivatives was more efficient than intervention only during the Abx administration period. Among the three dietary fibers, KGM behaved best, while DKGM and KOGM behaved equivalently. Additionally, KGM and its derivatives all reduced the inflammatory response accompanying BT, but DKGM may have a direct inhibitory efficacy in inflammation other than that through IL-10, unlike KGM or KOGM.


Assuntos
Translocação Bacteriana , Intestinos , Animais , Camundongos , Antibacterianos , Modelos Animais de Doenças , Inflamação , Prebióticos
2.
Int J Biol Macromol ; 251: 126306, 2023 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-37573922

RESUMO

In this study, konjac glucomannan (KGM) and its derivatives were gavaged as dietary fiber supplements, followed by a single dose of antibiotic cocktail (Abx) containing amoxicillin, neomycin, metronidazole and vancomycin in mice. The effects of dietary fiber on the pharmacokinetics and tissue distribution of each antibiotic were investigated. The results showed that the specific effects of KGM and its derivatives on the absorption, distribution, and elimination of certain antibiotics varied and depended on the nature of the fibers and the characteristics of the antibiotics. Explicitly, the ingestion of KGM and its derivatives enhanced the absorption of metronidazole by 1.7 times and hindered that of amoxicillin by nearly 36 % without affecting the absorption of neomycin sulfate and vancomycin. KGM and its derivatives had no effect on the distribution of amoxicillin and metronidazole, but DKGM and KGM hindered the distributions of neomycin sulfate (from 1.25 h to 1.62 h) and vancomycin (from 0.95 h to 1.14 h), respectively. KGM and its derivatives promoted the elimination of amoxicillin by nearly 38 % while prolonging that of metronidazole by >50 %. KOGM boosted the elimination of neomycin sulfate and vancomycin, but KGM differed from DKGM in acting on the elimination of both.

3.
Eur J Nutr ; 62(6): 2509-2525, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37160801

RESUMO

PURPOSE: Obesity has become a serious public health problem with its alarmingly increasing prevalence worldwide, prompting researchers to create and develop several anti-obesity drugs. Here, we aimed to investigate the protective effects of perilla seed oil (PSO), sunflower oil (SFO), and tea seed oil (TSO) against obesity through the modulation of the gut microbiota composition and related metabolic changes in mice fed a high-fat diet (HFD). METHODS: Mice were divided into six equal groups: ND (normal diet); HFD; ORL (HFD supplemented with 20 mg/kg body weight of orlistat); PSO, SFO, and TSO (HFD supplemented with 2 g/kg body weight of PSO, SFO, and TSO, respectively). RESULTS: Our findings showed that PSO, SFO, and TSO supplementation significantly reduced body weight, organ weight, blood glucose, lipopolysaccharides (LPS), insulin resistance, and improved serum lipid levels (TG, TC, LDL-C, and HDL-C). Meanwhile, the three treatments alleviated oxidative stress and hepatic steatosis and reduced liver lipid accumulation. Relative mRNA expression levels of inflammatory cytokines (TNF-α, IL-1ß, IL-6, and MCP-1) and lipid synthesis-related genes (PPAR-γ, FAS, and SREBP-1) were down-regulated, while ß-oxidation-related genes (PPAR-α, CPT1a, and CPT1b) were up-regulated in the liver tissue of treated mice. Besides, dietary oil supplementation alleviated HFD-induced gut microbiota dysbiosis by promoting gut microbiota richness and diversity, decreasing the Firmicutes-to-Bacteroidetes ratio, and boosting the abundance of some healthy bacteria, like Akkermansia. CONCLUSIONS: PSO, SFO, and TSO supplementation could alleviate inflammation, oxidative stress, and hepatic steatosis, likely by modulating the gut microbiota composition in HFD-fed mice.


Assuntos
Microbioma Gastrointestinal , Helianthus , Perilla , Camundongos , Animais , Dieta Hiperlipídica/efeitos adversos , Receptores Ativados por Proliferador de Peroxissomo , Obesidade/metabolismo , Suplementos Nutricionais , Óleos de Plantas/farmacologia , Chá , Camundongos Endogâmicos C57BL
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...